메뉴 건너뛰기




Volumn 8, Issue 1, 2014, Pages 355-389

Variational Bayesian inference with Gaussian-mixture approximations

Author keywords

Approximation methods; Bayesian lasso; Normal mixtures; State space models; Variational inference

Indexed keywords


EID: 84902472341     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-EJS887     Document Type: Article
Times cited : (34)

References (22)
  • 2
  • 4
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Appl. Statist. 21, 455-472.
    • (1995) Appl. Statist , vol.21 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 6
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian lasso regression
    • MR2564494
    • Hans, C. (2009). Bayesian lasso regression. Biometrika 96, 835-845. MR2564494.
    • (2009) Biometrika , vol.96 , pp. 835-845
    • Hans, C.1
  • 7
    • 77953359190 scopus 로고    scopus 로고
    • Model uncertainty and variable selection in Bayesian lasso regression
    • MR2610774
    • Hans, C. (2010). Model uncertainty and variable selection in Bayesian lasso regression. Statistics and Computing 20, 221-229. MR2610774.
    • (2010) Statistics and Computing , vol.20 , pp. 221-229
    • Hans, C.1
  • 10
    • 0001837853 scopus 로고    scopus 로고
    • Improving the mean field approximation via the use of mixture distributions
    • ed, In, M.I. Jordan, MIT Press, Cambridge, MA
    • Jaakkola, T. S. and Jordan, M. I. (1998). Improving the mean field approximation via the use of mixture distributions. In Learning in Graphical Models, ed. M. I. Jordan, MIT Press, Cambridge, MA, 163-174.
    • (1998) Learning in Graphical Models , pp. 163-174
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 13
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • MR2478318
    • Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited. Neural Computation 21, 786-792. MR2478318.
    • (2009) Neural Computation , vol.21 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 14
    • 0004059061 scopus 로고    scopus 로고
    • (eds.), Neural Information Processing Series. MIT Press, Cambridge, MA. MR1863214
    • Opper, M. and Saad, D. (eds.) (2001). Advanced mean field methods: theory and practice. Neural Information Processing Series. MIT Press, Cambridge, MA. MR1863214.
    • (2001) Advanced mean field methods: Theory and practice
    • Opper, M.1    Saad, D.2
  • 15
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • MR2757005
    • Ormerod, J. T. and Wand, M. P. (2010). Explaining variational approximations. The American Statistician 64, 140-153. MR2757005.
    • (2010) The American Statistician , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 19
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-288. MR1379242.
    • (1996) J.R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Found. Trends Mach. Learning 1, 1-305.
    • (2008) Found. Trends Mach. Learning , vol.1 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 22
    • 78651489788 scopus 로고    scopus 로고
    • Mean field inference for the Dirichlet process mixture model
    • MR2519531
    • Zobay, O. (2009). Mean field inference for the Dirichlet process mixture model. Electronic Journal Statistics 3, 507-545. MR2519531.
    • (2009) Electronic Journal Statistics , vol.3 , pp. 507-545
    • Zobay, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.