-
1
-
-
0033116881
-
Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance
-
N. O. Attoh-Okine. Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance. Advances in Engineering Software, 30(4):291-302, 1999.
-
(1999)
Advances in Engineering Software
, vol.30
, Issue.4
, pp. 291-302
-
-
Attoh-Okine, N.O.1
-
2
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
5
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer, Paris, France
-
L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proc. International Conference on Computational Statistics, pages 177-186. Springer, Paris, France, 2010.
-
(2010)
Proc. International Conference on Computational Statistics
, pp. 177-186
-
-
Bottou, L.1
-
8
-
-
85032752418
-
Convex optimization for big data: Scalable randomized, and parallel algorithms for big data analytics
-
V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Processing Magazine, 31(5):32-43, 2014.
-
(2014)
IEEE Signal Processing Magazine
, vol.31
, Issue.5
, pp. 32-43
-
-
Cevher, V.1
Becker, S.2
Schmidt, M.3
-
9
-
-
57249107300
-
Smooth optimization with approximate gradient
-
A. d'Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3):1171-1183, 2008.
-
(2008)
SIAM Journal on Optimization
, vol.19
, Issue.3
, pp. 1171-1183
-
-
D'Aspremont, A.1
-
10
-
-
84937908747
-
SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives
-
Montreal, Canada
-
A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Proc. Advances in Neural Information Processing Systems, pages 1646-1654, Montreal, Canada, 2014.
-
(2014)
Proc. Advances in Neural Information Processing Systems
, pp. 1646-1654
-
-
Defazio, A.1
Bach, F.2
Lacoste-Julien, S.3
-
11
-
-
84905567870
-
First-order methods of smooth convex optimization with inexact oracle
-
O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming, 146(1-2):37-75, 2014.
-
(2014)
Mathematical Programming
, vol.146
, Issue.1-2
, pp. 37-75
-
-
Devolder, O.1
Glineur, F.2
Nesterov, Y.3
-
12
-
-
84995469644
-
-
arXiv: 1602.05419, Feb
-
A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates for least-squares regression. arXiv: 1602.05419, Feb. 2016.
-
(2016)
Harder, Better, Faster, Stronger Convergence Rates for Least-squares Regression
-
-
Dieuleveut, A.1
Flammarion, N.2
Bach, F.3
-
13
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(2):2121-2159, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, Issue.2
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
14
-
-
84984697477
-
From averaging to acceleration, there is only a step-size
-
N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. Journal of Machine Learning Research, 40(1):1-38, 2015.
-
(2015)
Journal of Machine Learning Research
, vol.40
, Issue.1
, pp. 1-38
-
-
Flammarion, N.1
Bach, F.2
-
15
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
Alberta, Canada
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In Proc. International Conference on Knowledge Discovery and Data Mining, pages 69-77, Alberta, Canada, 2011.
-
(2011)
Proc. International Conference on Knowledge Discovery and Data Mining
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
16
-
-
84871576447
-
Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: A generic algorithmic framework
-
S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469-1492, 2012.
-
(2012)
SIAM Journal on Optimization
, vol.22
, Issue.4
, pp. 1469-1492
-
-
Ghadimi, S.1
Lan, G.2
-
18
-
-
77956508892
-
Accelerated gradient methods for stochastic optimization and online learning
-
Vancouver, Canada
-
C. Hu, W. Pan, and J. T. Kwok. Accelerated gradient methods for stochastic optimization and online learning. In Proc. Advances in Neural Information Processing Systems, pages 781-789, Vancouver, Canada, 2009.
-
(2009)
Proc. Advances in Neural Information Processing Systems
, pp. 781-789
-
-
Hu, C.1
Pan, W.2
Kwok, J.T.3
-
19
-
-
84898963415
-
Accelerating stochastic gradient descent using predictive variance reduction
-
Lake Tahoe, Navada
-
R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Proc. Advances in Neural Information Processing Systems (NIPS), pages 315-323, Lake Tahoe, Navada, 2013.
-
(2013)
Proc. Advances in Neural Information Processing Systems (NIPS)
, pp. 315-323
-
-
Johnson, R.1
Zhang, T.2
-
20
-
-
84892582758
-
Combining modality specific deep neural networks for emotion recognition in video
-
Sydney, Australia
-
S. Kahou, C. Pal, X. Bouthillier, P. Froumenty, and et al. Combining modality specific deep neural networks for emotion recognition in video. In Proc. International Conference on Multimodal Interaction, pages 543-550, Sydney, Australia, 2013.
-
(2013)
Proc. International Conference on Multimodal Interaction
, pp. 543-550
-
-
Kahou, S.1
Pal, C.2
Bouthillier, X.3
Froumenty, P.4
-
22
-
-
84862273593
-
An optimal method for stochastic composite optimization
-
G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming, 133(1-2):365-397, 2012.
-
(2012)
Mathematical Programming
, vol.133
, Issue.1-2
, pp. 365-397
-
-
Lan, G.1
-
23
-
-
84962476790
-
Analysis and design of optimization algorithms via integral quadratic constraints
-
L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57-95, 2016.
-
(2016)
SIAM Journal on Optimization
, vol.26
, Issue.1
, pp. 57-95
-
-
Lessard, L.1
Recht, B.2
Packard, A.3
-
24
-
-
0005422061
-
Convergence rate of incremental subgradient algorithms
-
S. Uryasey and M. Pardalos P, editors, Springer
-
A. Nedić and D. P. Bertsekas. Convergence rate of incremental subgradient algorithms. In S. Uryasey and M. Pardalos P, editors, Stochastic Optimization: Algorithms and Applications, volume 54, pages 223-264. Springer, 2001.
-
(2001)
Stochastic Optimization: Algorithms and Applications
, vol.54
, pp. 223-264
-
-
Nedić, A.1
Bertsekas, D.P.2
-
25
-
-
34548480020
-
A method of solving a convex programming problem with convergence rate O(1/k2)
-
Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372-376, 1983.
-
(1983)
Soviet Mathematics Doklady
, vol.27
, Issue.2
, pp. 372-376
-
-
Nesterov, Y.1
-
27
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-152, 2005.
-
(2005)
Mathematical Programming
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
28
-
-
84937865260
-
Stochastic proximal gradient descent with acceleration techniques
-
Montreal, Canada
-
A. Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Proc. Advances in Neural Information Processing Systems, pages 1574-1582, Montreal, Canada, 2014.
-
(2014)
Proc. Advances in Neural Information Processing Systems
, pp. 1574-1582
-
-
Nitanda, A.1
-
31
-
-
0016321936
-
Channel identification for high speed digital communications
-
J. G. Proakis. Channel identification for high speed digital communications. IEEE Transactions on Automatic Control, 19(6):916-922, 1974.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 916-922
-
-
Proakis, J.G.1
-
32
-
-
0032983160
-
On the momentum term in gradient descent learning algorithms
-
N. Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145-151, 1999.
-
(1999)
Neural Networks
, vol.12
, Issue.1
, pp. 145-151
-
-
Qian, N.1
-
33
-
-
84877725219
-
A stochastic gradient method with an exponential convergence rate for finite training sets
-
Lake Tahoe, Navada
-
N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In Proc. Advances in Neural Information Processing Systems (NIPS), pages 2663-2671, Lake Tahoe, Navada, 2012.
-
(2012)
Proc. Advances in Neural Information Processing Systems (NIPS)
, pp. 2663-2671
-
-
Roux, N.L.1
Schmidt, M.2
Bach, F.R.3
-
36
-
-
84905009821
-
Adaptation, learning, and optimization over networks
-
Jul
-
A. H. Sayed. Adaptation, learning, and optimization over networks. Foundations and Trends in Machine Learning, 7(4-5):311-801, Jul. 2014a.
-
(2014)
Foundations and Trends in Machine Learning
, vol.7
, Issue.4-5
, pp. 311-801
-
-
Sayed, A.H.1
-
37
-
-
84897483887
-
Adaptive networks
-
A. H. Sayed. Adaptive networks. Proceedings of the IEEE, 102(4):460-497, 2014b.
-
(2014)
Proceedings of the IEEE
, vol.102
, Issue.4
, pp. 460-497
-
-
Sayed, A.H.1
-
39
-
-
84965174061
-
Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization
-
Beijing, China
-
S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. In Proc. International Conference on Machine Learning, pages 64-72, Beijing, China, 2014.
-
(2014)
Proc. International Conference on Machine Learning
, pp. 64-72
-
-
Shalev-Shwartz, S.1
Zhang, T.2
-
40
-
-
0032069997
-
Analysis of momentum adaptive filtering algorithms
-
R. Sharma, W. A. Sethares, and J. A. Bucklew. Analysis of momentum adaptive filtering algorithms. IEEE Transactions on Signal Processing, 46(5):1430-1434, 1998.
-
(1998)
IEEE Transactions on Signal Processing
, vol.46
, Issue.5
, pp. 1430-1434
-
-
Sharma, R.1
Sethares, W.A.2
Bucklew, J.A.3
-
42
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Atlanta, USA
-
I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep learning. In Proc. International Conference on Machine Learning, pages 1139-1147, Atlanta, USA, 2013.
-
(2013)
Proc. International Conference on Machine Learning
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
43
-
-
84937522268
-
Going deeper with convolutions
-
Boston, USA, June
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelo, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 1-9, Boston, USA, June 2015.
-
(2015)
Proc. IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelo, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
45
-
-
84937061485
-
Tracking performance of momentum LMS algorithm for a chirped sinusoidal signal
-
Tampere, Finland
-
L. K. Ting, C. F. N. Cowan, and R. F. Woods. Tracking performance of momentum LMS algorithm for a chirped sinusoidal signal. In Proc. European Signal Processing Conference, pages 1-4, Tampere, Finland, 2000.
-
(2000)
Proc. European Signal Processing Conference
, pp. 1-4
-
-
Ting, L.K.1
Cowan, C.F.N.2
Woods, R.F.3
-
46
-
-
0024749726
-
Properties of the momentum LMS algorithm
-
M. A. Tugay and Y. Tanik. Properties of the momentum LMS algorithm. Signal Processing, 18(2):117-127, 1989.
-
(1989)
Signal Processing
, vol.18
, Issue.2
, pp. 117-127
-
-
Tugay, M.A.1
Tanik, Y.2
-
49
-
-
21344488792
-
Stochastic dynamics of learning with momentum in neural networks
-
W. Wiegerinck, A. Komoda, and T. Heskes. Stochastic dynamics of learning with momentum in neural networks. Journal of Physics A: Mathematical and General, 27(13): 4425-4438, 1994.
-
(1994)
Journal of Physics A: Mathematical and General
, vol.27
, Issue.13
, pp. 4425-4438
-
-
Wiegerinck, W.1
Komoda, A.2
Heskes, T.3
-
50
-
-
78649396336
-
Dual averaging methods for regularized stochastic learning and online optimization
-
(Oct)
-
L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine Learning Research, 11(Oct):2543-2596, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2543-2596
-
-
Xiao, L.1
-
52
-
-
84973369182
-
Performance limits of single-agent and multi-agent sub-gradient stochastic learning
-
Shanghai, China, March
-
B. Ying and A. H. Sayed. Performance limits of single-agent and multi-agent sub-gradient stochastic learning. In Proc. International Conference on Acoustics, Speech and Signal Processing, pages 4905-4909, Shanghai, China, March 2016.
-
(2016)
Proc. International Conference on Acoustics, Speech and Signal Processing
, pp. 4905-4909
-
-
Ying, B.1
Sayed, A.H.2
-
53
-
-
84973390661
-
On the influence of momentum acceleration on online learning
-
Shanghai, China, March
-
K. Yuan, B. Ying, and A. H. Sayed. On the influence of momentum acceleration on online learning. In Proc. International Conference on Acoustics, Speech and Signal Processing, pages 4915-4919, Shanghai, China, March 2016.
-
(2016)
Proc. International Conference on Acoustics, Speech and Signal Processing
, pp. 4915-4919
-
-
Yuan, K.1
Ying, B.2
Sayed, A.H.3
-
54
-
-
84906535729
-
Accelerated learning for restricted Boltzmann machine with momentum term
-
Coventry, UK
-
Ś. Zareba, A. Gonczarek, J. M. Tomczak, and J. Swiatek. Accelerated learning for restricted Boltzmann machine with momentum term. In Proc. International Conference on Systems Engineering, pages 187-192, Coventry, UK, 2015.
-
(2015)
Proc. International Conference on Systems Engineering
, pp. 187-192
-
-
Zareba, S.1
Gonczarek, A.2
Tomczak, J.M.3
Swiatek, J.4
-
55
-
-
33749243068
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
Alberta, Canada
-
T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In Proc. International Conference on Machine Learning, page 116, Alberta, Canada, 2004.
-
(2004)
Proc. International Conference on Machine Learning
, pp. 116
-
-
Zhang, T.1
|