-
1
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise,
-
[1] M. Ester, H.P. Kriegel, J. Sander, X.W. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226–231.
-
(1996)
International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.W.4
-
2
-
-
84897773064
-
Automatic subspace clustering of high dimensional data,
-
[2] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data, in: International Conference on Knowledge Discovery and Data Mining, 2005, pp. 517–521.
-
(2005)
International Conference on Knowledge Discovery and Data Mining
, pp. 517-521
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0034244751
-
Normalized cuts and image segmentation
-
[3] Shi, J., Malik, J., Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22:8 (2000), 167–172.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 167-172
-
-
Shi, J.1
Malik, J.2
-
4
-
-
33847172327
-
Clustering by passing messages between data points
-
[4] Brendan, J.F., Delbert, D., Clustering by passing messages between data points. Science 315 (2007), 972–976.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Brendan, J.F.1
Delbert, D.2
-
5
-
-
84903289127
-
Clustering by fast search and find of density peaks
-
[5] Rodriguez, A., Laio, A., Clustering by fast search and find of density peaks. Science 344 (2014), 1492–1496.
-
(2014)
Science
, vol.344
, pp. 1492-1496
-
-
Rodriguez, A.1
Laio, A.2
-
7
-
-
84911428734
-
Constructing robust affinity graphs for spectral clustering,
-
[7] X. Zhu, C.C. Loy, S. Gong, Constructing robust affinity graphs for spectral clustering, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2014, pp. 1450–1457.
-
(2014)
IEEE International Conference on Computer Vision and Pattern Recognition
, pp. 1450-1457
-
-
Zhu, X.1
Loy, C.C.2
Gong, S.3
-
8
-
-
84872242129
-
Fuzzy c-means clustering with local information and kernel metric for image segmentation
-
[8] Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J., Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22:2 (2013), 573–584.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.2
, pp. 573-584
-
-
Gong, M.1
Liang, Y.2
Shi, J.3
Ma, W.4
Ma, J.5
-
9
-
-
77953220574
-
Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest,
-
[9] C. Couprie, L. Grady, L. Najman, H. Talbot, Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest, in: IEEE International Conference on Computer Vision, 2009, pp. 731–738.
-
(2009)
IEEE International Conference on Computer Vision
, pp. 731-738
-
-
Couprie, C.1
Grady, L.2
Najman, L.3
Talbot, H.4
-
10
-
-
84878867512
-
Interactive image segmentation based on synthetic graph coordinates
-
[10] Panagiotakis, C., Papadakis, H., Grinias, E., Komodakis, N., Fragopoulou, P., Tziritas, G., Interactive image segmentation based on synthetic graph coordinates. Pattern Recognit. 46:11 (2013), 2940–2952.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.11
, pp. 2940-2952
-
-
Panagiotakis, C.1
Papadakis, H.2
Grinias, E.3
Komodakis, N.4
Fragopoulou, P.5
Tziritas, G.6
-
11
-
-
79952560259
-
A benchmark for interactive image segmentation algorithms,
-
[11] Y. Zhao, X. Nie, Y. Duan, Y. Huang, S. Luo, A benchmark for interactive image segmentation algorithms, in: IEEE Workshop on Person-Oriented Vision, 2011, pp. 33–38.
-
(2011)
IEEE Workshop on Person-Oriented Vision
, pp. 33-38
-
-
Zhao, Y.1
Nie, X.2
Duan, Y.3
Huang, Y.4
Luo, S.5
-
12
-
-
84924402231
-
A global/local affinity graph for image segmentation
-
[12] Wang, X., Tang, Y., Masnou, S., Chen, L., A global/local affinity graph for image segmentation. IEEE Trans. Image Process. 24:4 (2015), 1399–1411.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.4
, pp. 1399-1411
-
-
Wang, X.1
Tang, Y.2
Masnou, S.3
Chen, L.4
-
13
-
-
84964797846
-
Large data clustering using quadratic programming: a comprehensive quantitative analysis,
-
[13] A. Chakeri, L.O. Hall, Large data clustering using quadratic programming: a comprehensive quantitative analysis, in: 2015 IEEE International Conference on Data Mining Workshop, 2015, pp. 806–813.
-
(2015)
2015 IEEE International Conference on Data Mining Workshop
, pp. 806-813
-
-
Chakeri, A.1
Hall, L.O.2
-
14
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
[14] Fraley, C., Raftery, A.E., How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41:8 (1998), 578–588.
-
(1998)
Comput. J.
, vol.41
, Issue.8
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
15
-
-
0035532141
-
Estimating the number of clusters in a data set via the gap statistic
-
[15] Tibshirani, R., Walther, G., Hastie, T., Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc.—Ser. B: Stat. Methodol. 63:2 (2001), 411–423.
-
(2001)
J. R. Stat. Soc.—Ser. B: Stat. Methodol.
, vol.63
, Issue.2
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
16
-
-
0038724494
-
Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
-
[16] Monti, S., Tamayo, P., Mesirov, J., Golub, T., Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52:1–2 (2003), 91–118.
-
(2003)
Mach. Learn.
, vol.52
, Issue.1-2
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
-
17
-
-
21244479740
-
Detecting the number of clusters of individuals using the software structure: a simulation study
-
[17] Evanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14:8 (2005), 2611–2620.
-
(2005)
Mol. Ecol.
, vol.14
, Issue.8
, pp. 2611-2620
-
-
Evanno, G.1
Regnaut, S.2
Goudet, J.3
-
18
-
-
3142665421
-
Correlation clustering
-
[18] Bansal, N., Blum, A., Chawla, S., Correlation clustering. Mach. Learn. 56:1–3 (2004), 89–113.
-
(2004)
Mach. Learn.
, vol.56
, Issue.1-3
, pp. 89-113
-
-
Bansal, N.1
Blum, A.2
Chawla, S.3
-
19
-
-
33746868385
-
Correlation clustering in general weighted graphs
-
[19] Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N., Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361 (2006), 172–187.
-
(2006)
Theor. Comput. Sci.
, vol.361
, pp. 172-187
-
-
Demaine, E.D.1
Emanuel, D.2
Fiat, A.3
Immorlica, N.4
-
21
-
-
33947276658
-
Dominant sets and pairwise clustering
-
[21] Pavan, M., Pelillo, M., Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29:1 (2007), 167–172.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 167-172
-
-
Pavan, M.1
Pelillo, M.2
-
22
-
-
77957939942
-
Beyond partitions: allowing overlapping groups in pairwise clustering,
-
[22] A. Torsello, S.R. Bulo, M. Pelillo, Beyond partitions: allowing overlapping groups in pairwise clustering, in: International Conference on Pattern Recognition, 2008, pp. 1–4.
-
(2008)
International Conference on Pattern Recognition
, pp. 1-4
-
-
Torsello, A.1
Bulo, S.R.2
Pelillo, M.3
-
23
-
-
67650988848
-
A novel sequence representation for unsupervised analysis of human activities
-
[23] Hamid, R., Maddi, S., Johnson, A.Y., Bobick, A.F., Essa, I.A., Isbell, C., A novel sequence representation for unsupervised analysis of human activities. Artif. Intell. 173 (2009), 1221–1244.
-
(2009)
Artif. Intell.
, vol.173
, pp. 1221-1244
-
-
Hamid, R.1
Maddi, S.2
Johnson, A.Y.3
Bobick, A.F.4
Essa, I.A.5
Isbell, C.6
-
24
-
-
77955085372
-
Tag snp selection based on clustering according to dominant sets found using replicator dynamics
-
[24] Frommlet, F., Tag snp selection based on clustering according to dominant sets found using replicator dynamics. Adv. Data Anal. Classif. 4 (2010), 65–83.
-
(2010)
Adv. Data Anal. Classif.
, vol.4
, pp. 65-83
-
-
Frommlet, F.1
-
25
-
-
84855887546
-
Contour-based object detection as dominant set computation
-
[25] Yang, X.W., Liu, H.R., Laecki, L.J., Contour-based object detection as dominant set computation. Pattern Recognit. 45 (2012), 1927–1936.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 1927-1936
-
-
Yang, X.W.1
Liu, H.R.2
Laecki, L.J.3
-
26
-
-
84878889054
-
A simple feature combination method based on dominant sets
-
[26] Hou, J., Pelillo, M., A simple feature combination method based on dominant sets. Pattern Recognition 46:11 (2013), 3129–3139.
-
(2013)
Pattern Recognition
, vol.46
, Issue.11
, pp. 3129-3139
-
-
Hou, J.1
Pelillo, M.2
-
27
-
-
84926329206
-
Experimental study on dominant sets clustering
-
[27] Hou, J., Xia, Q., Qi, N., Experimental study on dominant sets clustering. IET Comput. Vis. 9:2 (2015), 208–215.
-
(2015)
IET Comput. Vis.
, vol.9
, Issue.2
, pp. 208-215
-
-
Hou, J.1
Xia, Q.2
Qi, N.3
-
28
-
-
85125509388
-
-
[28] J. Hou, X.E., L. Chi, Q. Xia, N. M. Qi, Dset++: a robust clustering algorithm, in: International Conference on Image Processing, 2013, pp. 3795–3799.
-
X.E., L. Chi, Q. Xia, N. M. Qi, Dset++: a robust clustering algorithm, in: International Conference on Image Processing, 2013, pp. 3795–3799.
-
-
Hou, J.1
-
29
-
-
33845597353
-
Grouping with asymmetric affinities: a game-theoretic perspective,
-
[29] A. Torsello, S.R. Bulo, M. Pelillo, Grouping with asymmetric affinities: a game-theoretic perspective, in: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, 2006, pp. 292–299.
-
(2006)
IEEE International Conference on Computer Vision and Pattern Recognition
, vol.1
, pp. 292-299
-
-
Torsello, A.1
Bulo, S.R.2
Pelillo, M.3
-
30
-
-
79956150569
-
Graph-based quadratic optimization: a fast evolutionary approach
-
[30] Bulo, S.R., Pelillo, M., Bomze, I.M., Graph-based quadratic optimization: a fast evolutionary approach. Comput. Vis. Image Underst. 115:7 (2011), 984–995.
-
(2011)
Comput. Vis. Image Underst.
, vol.115
, Issue.7
, pp. 984-995
-
-
Bulo, S.R.1
Pelillo, M.2
Bomze, I.M.3
-
31
-
-
34248168069
-
Clustering aggregation
-
[31] Gionis, A., Mannila, H., Tsaparas, P., Clustering aggregation. ACM Trans. Knowl. Discov. Data 1:1 (2007), 1–30.
-
(2007)
ACM Trans. Knowl. Discov. Data
, vol.1
, Issue.1
, pp. 1-30
-
-
Gionis, A.1
Mannila, H.2
Tsaparas, P.3
-
32
-
-
0014976008
-
Graph-theoretical methods for detecting and describing gestalt clusters
-
[32] Zahn, C.T., Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20:1 (1971), 68–86.
-
(1971)
IEEE Trans. Comput.
, vol.20
, Issue.1
, pp. 68-86
-
-
Zahn, C.T.1
-
33
-
-
34548016117
-
Robust path-based spectral clustering
-
[33] Chang, H., Yeung, D.Y., Robust path-based spectral clustering. Pattern Recognit. 41:1 (2008), 191–203.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.1
, pp. 191-203
-
-
Chang, H.1
Yeung, D.Y.2
-
34
-
-
0036709181
-
A maximum variance cluster algorithm
-
[34] Veenman, C.J., Reinders, M., Backer, E., A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24:9 (2002), 1273–1280.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.9
, pp. 1273-1280
-
-
Veenman, C.J.1
Reinders, M.2
Backer, E.3
-
35
-
-
39449096984
-
Flame, a novel fuzzy clustering method for the analysis of dna microarray data
-
[35] Fu, L., Medico, E., Flame, a novel fuzzy clustering method for the analysis of dna microarray data. BMC Bioinform. 8:1 (2007), 1–17.
-
(2007)
BMC Bioinform.
, vol.8
, Issue.1
, pp. 1-17
-
-
Fu, L.1
Medico, E.2
-
36
-
-
84891042674
-
Image Processing: Principles and Applications
-
Wiley-Interscience Hoboken, New Jersey
-
[36] Acharya, T., Ray, A.K., Image Processing: Principles and Applications. 2005, Wiley-Interscience, Hoboken, New Jersey.
-
(2005)
-
-
Acharya, T.1
Ray, A.K.2
-
37
-
-
0035972909
-
Looking for natural patterns in data: Part 1. Density-based approach
-
[37] Daszykowski, M., Walczak, B., Massart, D.L., Looking for natural patterns in data: Part 1. Density-based approach. Chem. Intell. Lab. Syst. 56:2 (2001), 83–92.
-
(2001)
Chem. Intell. Lab. Syst.
, vol.56
, Issue.2
, pp. 83-92
-
-
Daszykowski, M.1
Walczak, B.2
Massart, D.L.3
-
38
-
-
84919922405
-
-
[38] J. Hou, X.E., L. Chi, Q. Xia, N.M. Qi, Robust clustering based on dominant sets, in: International Conference on Pattern Recognition, 2014, pp. 1466–1471.
-
X.E., L. Chi, Q. Xia, N.M. Qi, Robust clustering based on dominant sets, in: International Conference on Pattern Recognition, 2014, pp. 1466–1471.
-
-
Hou, J.1
|