메뉴 건너뛰기




Volumn 45, Issue , 2015, Pages 37-43

Forecasting the COMEX copper spot price by means of neural networks and ARIMA models

Author keywords

Autoregressive integrated moving average (ARIMA); Copper; Neural networks; New york commodity exchange (COMEX); Price forecasting; Time series analysis

Indexed keywords

COPPER; COSTS; FORECASTING; NEURAL NETWORKS; TIME SERIES ANALYSIS;

EID: 84961736541     PISSN: 03014207     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.resourpol.2015.03.004     Document Type: Article
Times cited : (134)

References (35)
  • 1
    • 84897548275 scopus 로고    scopus 로고
    • Comparison of ARIMA and artificial neural networks models for stock price prediction
    • Adebiyi A.A., Adewumi A.O., Ayo C.K. Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 2014. Article ID 614342, 7 pp. 10.1155/2014/614342.
    • (2014) J. Appl. Math. , vol.2014 , pp. 7
    • Adebiyi, A.A.1    Adewumi, A.O.2    Ayo, C.K.3
  • 2
    • 0000068589 scopus 로고    scopus 로고
    • R. A. Fisher and the making of maximum likelihood 1912-1922
    • Aldrich J. R. A. Fisher and the making of maximum likelihood 1912-1922. Stat. Sci. 1997, 12(3):162-176. 10.1214/ss/1030037906.
    • (1997) Stat. Sci. , vol.12 , Issue.3 , pp. 162-176
    • Aldrich, J.1
  • 3
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • Azadeh A., Ghaderi S.F., Sohrabkhani S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Convers. Manag. 2008, 49(8):2272-2278. 10.1016/j.enconman.2008.01.035.
    • (2008) Energy Convers. Manag. , vol.49 , Issue.8 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 4
    • 84857383259 scopus 로고    scopus 로고
    • Neural networks in R using the Stuttgart neural network simulator: RSNNS
    • Bergmeir C., Benitez J.M. Neural networks in R using the Stuttgart neural network simulator: RSNNS. J. Stat. Softw. 2012, 46(7):1-26.
    • (2012) J. Stat. Softw. , vol.46 , Issue.7 , pp. 1-26
    • Bergmeir, C.1    Benitez, J.M.2
  • 8
    • 84961682693 scopus 로고    scopus 로고
    • Retrieved from: (accessed 07.04.14.).
    • CME Group, 2014. Copper Futures Contract Specs. Retrieved from: (accessed 07.04.14.). http://www.cmegroup.com/trading/metals/base/copper_contract_specifications.html.
    • (2014) Copper Futures Contract Specs
  • 9
    • 78349307274 scopus 로고    scopus 로고
    • Can oil prices help estimate commodity futures prices? The cases of copper and silver
    • Cortazar G., Eterovic F. Can oil prices help estimate commodity futures prices? The cases of copper and silver. Resour. Policy 2010, 35(4):283-291. 10.1016/j.resourpol.2010.07.004.
    • (2010) Resour. Policy , vol.35 , Issue.4 , pp. 283-291
    • Cortazar, G.1    Eterovic, F.2
  • 10
    • 29144494780 scopus 로고    scopus 로고
    • An assessment of time series methods in metal price forecasting
    • Dooley G., Lenihan H. An assessment of time series methods in metal price forecasting. Resour. Policy 2005, 30(3):208-217. 10.1016/j.resourpol.2005.08.007.
    • (2005) Resour. Policy , vol.30 , Issue.3 , pp. 208-217
    • Dooley, G.1    Lenihan, H.2
  • 11
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cogn. Sci. 1990, 14(2):179-211. 10.1207/s15516709cog1402_1.
    • (1990) Cogn. Sci. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 12
    • 84880768492 scopus 로고    scopus 로고
    • Simultaneity, forecasting and profits in London copper futures
    • Goss B.A., Avsar S.G. Simultaneity, forecasting and profits in London copper futures. Aust. Econ. Pap. 2013, 52(2):79-96. 10.1111/1467-8454.12008.
    • (2013) Aust. Econ. Pap. , vol.52 , Issue.2 , pp. 79-96
    • Goss, B.A.1    Avsar, S.G.2
  • 14
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5(6):989-993. 10.1109/72.329697.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 18
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: the forecast package for R
    • Hyndman R.J., Khandakar Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 2008, 27(3):1-22.
    • (2008) J. Stat. Softw. , vol.27 , Issue.3 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2
  • 19
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p,d,q) model for time series forecasting
    • Khashei M., Bijari M. An artificial neural network (p,d,q) model for time series forecasting. Expert Syst. Appl. 2010, 37:479-489. 10.1016/j.eswa.2009.05.044.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 20
    • 78149252790 scopus 로고    scopus 로고
    • Return distributions and volatility forecasting in metal futures markets: evidence from gold, silver, and copper
    • Khalifa A.A., Miao H., Ramchander S. Return distributions and volatility forecasting in metal futures markets: evidence from gold, silver, and copper. J. Futures Mark. 2011, 31(1):55-80. 10.1002/fut.20459.
    • (2011) J. Futures Mark. , vol.31 , Issue.1 , pp. 55-80
    • Khalifa, A.A.1    Miao, H.2    Ramchander, S.3
  • 21
    • 84888248080 scopus 로고    scopus 로고
    • An improved wavelet-ARIMA approach for forecasting metal prices
    • Kriechbaumer T., Angus A., Parsons D., Rivas Casado M. An improved wavelet-ARIMA approach for forecasting metal prices. Resour. Policy 2014, 39:32-41. 10.1016/j.resourpol.2013.10.005.
    • (2014) Resour. Policy , vol.39 , pp. 32-41
    • Kriechbaumer, T.1    Angus, A.2    Parsons, D.3    Rivas Casado, M.4
  • 22
    • 0032173164 scopus 로고    scopus 로고
    • The existence of metal price cycles
    • Labys W.C., Lesourd J.B., Badillo D. The existence of metal price cycles. Resour. Policy 1998, 24(3):147-155. 10.1016/S0301-4207(98)00023-3.
    • (1998) Resour. Policy , vol.24 , Issue.3 , pp. 147-155
    • Labys, W.C.1    Lesourd, J.B.2    Badillo, D.3
  • 23
    • 0028543030 scopus 로고
    • Artificial neural networks and their business aplications
    • Li E.Y. Artificial neural networks and their business aplications. Inf. Manag. 1994, 27:303-313.
    • (1994) Inf. Manag. , vol.27 , pp. 303-313
    • Li, E.Y.1
  • 24
    • 0017846358 scopus 로고
    • On a measure of lack of fit in time series models
    • Ljung G.M., Box G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65(2):297-303. 10.1093/biomet/65.2.297.
    • (1978) Biometrika , vol.65 , Issue.2 , pp. 297-303
    • Ljung, G.M.1    Box, G.E.P.2
  • 25
    • 84886432686 scopus 로고    scopus 로고
    • Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm
    • Ma W., Zhu X., Wang M. Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm. Resour. Policy 2013, 38(4):613-620. 10.1016/j.resourpol.2013.09.007.
    • (2013) Resour. Policy , vol.38 , Issue.4 , pp. 613-620
    • Ma, W.1    Zhu, X.2    Wang, M.3
  • 27
    • 16344380274 scopus 로고    scopus 로고
    • Model identification of ARIMA family using genetic algorithms
    • Ong C.S., Huang J.J., Tzeng G.H. Model identification of ARIMA family using genetic algorithms. Appl. Math. Comput. 2005, 164(3):885-912. 10.1016/j.amc.2004.06.044.
    • (2005) Appl. Math. Comput. , vol.164 , Issue.3 , pp. 885-912
    • Ong, C.S.1    Huang, J.J.2    Tzeng, G.H.3
  • 28
    • 84914179053 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing. Vienna. Retrieved from:.
    • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna. Retrieved from:. http://www.R-project.org/.
    • (2013) R: A Language and Environment for Statistical Computing
  • 29
    • 27744539849 scopus 로고    scopus 로고
    • Resolve of overlapping voltammetric signals in using a wavelet packet transform based Elman recurrent neural network
    • Ren S., Gao L. Resolve of overlapping voltammetric signals in using a wavelet packet transform based Elman recurrent neural network. J. Electroanal. Chem. 2006, 586(1):23-30. 10.1016/j.jelechem.2005.09.018.
    • (2006) J. Electroanal. Chem. , vol.586 , Issue.1 , pp. 23-30
    • Ren, S.1    Gao, L.2
  • 30
    • 67349106704 scopus 로고    scopus 로고
    • Duration and characteristics of metal price cycles
    • Roberts M.C. Duration and characteristics of metal price cycles. Resour. Policy 2009, 34(3):87-102. 10.1016/j.resourpol.2009.02.001.
    • (2009) Resour. Policy , vol.34 , Issue.3 , pp. 87-102
    • Roberts, M.C.1
  • 31
    • 77955658249 scopus 로고    scopus 로고
    • The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process
    • Sánchez Lasheras F., Vilán Vilán J.A., García Nieto P.J., del Coz Díaz J.J. The use of design of experiments to improve a neural network model in order to predict the thickness of the chromium layer in a hard chromium plating process. Math. Comput. Model. 2010, 52(7-8):1169-1176. 10.1016/j.mcm.2010.03.007.
    • (2010) Math. Comput. Model. , vol.52 , Issue.7-8 , pp. 1169-1176
    • Sánchez Lasheras, F.1    Vilán Vilán, J.A.2    García Nieto, P.J.3    del Coz Díaz, J.J.4
  • 33
    • 84963178774 scopus 로고
    • Further analysts of the data by Akaike's information criterion and the finite corrections
    • Sugiura N. Further analysts of the data by Akaike's information criterion and the finite corrections. Commun. Stat. Theory 1978, 7(1):13-26.
    • (1978) Commun. Stat. Theory , vol.7 , Issue.1 , pp. 13-26
    • Sugiura, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.