메뉴 건너뛰기




Volumn 52, Issue , 2014, Pages 260-270

Relational machine learning for electronic health record-driven phenotyping

Author keywords

Electronic health record; Inductive logic programming; Machine learning; Phenotyping; Relational machine learning

Indexed keywords

COMPUTER CIRCUITS; DIAGNOSIS; E-LEARNING; EHEALTH; HEALTH RISKS; LEARNING SYSTEMS; MACHINE LEARNING; MEDICAL COMPUTING; RECORDS MANAGEMENT;

EID: 84919848159     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2014.07.007     Document Type: Article
Times cited : (45)

References (45)
  • 3
    • 77950346153 scopus 로고    scopus 로고
    • Pharmacogenomics: the importance of accurate phenotypes
    • Gurwitz D., Pirmohamed M. Pharmacogenomics: the importance of accurate phenotypes. Pharmacogenomics 2010, 11:469-470.
    • (2010) Pharmacogenomics , vol.11 , pp. 469-470
    • Gurwitz, D.1    Pirmohamed, M.2
  • 4
    • 70350351582 scopus 로고    scopus 로고
    • Detecting new neurodegenerative disease genes: does phenotype accuracy limit the horizon?
    • Samuels D.C., Burn D.J., Chinnery P.F. Detecting new neurodegenerative disease genes: does phenotype accuracy limit the horizon?. Trends Genet 2009, 25:486-488.
    • (2009) Trends Genet , vol.25 , pp. 486-488
    • Samuels, D.C.1    Burn, D.J.2    Chinnery, P.F.3
  • 5
    • 79955035027 scopus 로고    scopus 로고
    • Electronic medical records for genetic research: results of the eMERGE Consortium
    • Kho A.N., Pacheco J.A., Peissig P.L., et al. Electronic medical records for genetic research: results of the eMERGE Consortium. Sci Transl Med 2011, 3:3-79.
    • (2011) Sci Transl Med , vol.3 , pp. 3-79
    • Kho, A.N.1    Pacheco, J.A.2    Peissig, P.L.3
  • 6
    • 84881328205 scopus 로고    scopus 로고
    • Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
    • Newton K.M., Peissig P.L., Kho A.N., et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Inform Assoc 2013, 20:e147-e154.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. e147-e154
    • Newton, K.M.1    Peissig, P.L.2    Kho, A.N.3
  • 7
    • 84874213343 scopus 로고    scopus 로고
    • Naïve electronic health record phenotype identification for rheumatoid arthritis
    • Carroll R.J., Eyler A.E., Denny J.C. Naïve electronic health record phenotype identification for rheumatoid arthritis. AMIA Annu Symp Proc 2011, 2011:189-196.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 189-196
    • Carroll, R.J.1    Eyler, A.E.2    Denny, J.C.3
  • 8
    • 84964947983 scopus 로고    scopus 로고
    • An empirical validation of Recursive Noisy OR (RNOR) rule for asthma prediction
    • Anand V., Downs S.M. An empirical validation of Recursive Noisy OR (RNOR) rule for asthma prediction. AMIA Annu Symp Proc 2010, 2010:16-20.
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 16-20
    • Anand, V.1    Downs, S.M.2
  • 9
    • 84865393336 scopus 로고    scopus 로고
    • Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases
    • Xu H., Fu Z., Shah A., et al. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. AMIA Annu Symp Proc 2011, 2011:1564-1572.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 1564-1572
    • Xu, H.1    Fu, Z.2    Shah, A.3
  • 10
    • 35548975678 scopus 로고    scopus 로고
    • Feature selection and classification model construction on type 2 diabetic patients' data
    • Huang Y., McCullagh P., Black N., et al. Feature selection and classification model construction on type 2 diabetic patients' data. Artif Intell Med 2007, 41:251-262.
    • (2007) Artif Intell Med , vol.41 , pp. 251-262
    • Huang, Y.1    McCullagh, P.2    Black, N.3
  • 12
    • 34250895016 scopus 로고    scopus 로고
    • Electronic medical records for clinical research: application to the identification of heart failure
    • Pakhomov S., Weston S.A. Electronic medical records for clinical research: application to the identification of heart failure. Am J Manag Care 2007, 13:281-288.
    • (2007) Am J Manag Care , vol.13 , pp. 281-288
    • Pakhomov, S.1    Weston, S.A.2
  • 13
    • 77953635924 scopus 로고    scopus 로고
    • Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches
    • Wu J., Roy J., Stewart W.F. Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches. Med Care 2010, 48:S106-S113.
    • (2010) Med Care , vol.48 , pp. S106-S113
    • Wu, J.1    Roy, J.2    Stewart, W.F.3
  • 16
    • 84883793103 scopus 로고    scopus 로고
    • Developing an expert panel process to refine health outcome definitions in observational data
    • Fox B.I., Hollingsworth J.C., Gray M.D., et al. Developing an expert panel process to refine health outcome definitions in observational data. J Biomed Inform 2013, 46:795-804.
    • (2013) J Biomed Inform , vol.46 , pp. 795-804
    • Fox, B.I.1    Hollingsworth, J.C.2    Gray, M.D.3
  • 19
    • 67049160357 scopus 로고    scopus 로고
    • Probabilistic computer model developed from clinical data in national mammography database format to classify mammographic findings
    • Burnside E.S., Davis J., Chatwal J., et al. Probabilistic computer model developed from clinical data in national mammography database format to classify mammographic findings. Radiology 2009, 251:663-672.
    • (2009) Radiology , vol.251 , pp. 663-672
    • Burnside, E.S.1    Davis, J.2    Chatwal, J.3
  • 20
    • 84919854792 scopus 로고    scopus 로고
    • Graphical-model based multiple testing under dependence
    • with applications to genome-wide association studies. In: Proceedings of the 28th conference on uncertainty in artificial intelligence (UAI)
    • Liu J, Zhang C, McCarty C, et al. Graphical-model based multiple testing under dependence, with applications to genome-wide association studies. In: Proceedings of the 28th conference on uncertainty in artificial intelligence (UAI); 2012.
    • (2012)
    • Liu, J.1    Zhang, C.2    McCarty, C.3
  • 21
    • 78650933627 scopus 로고    scopus 로고
    • Machine learning for personalized medicine: will this drug give me a heart attack?
    • workshop on machine learning in health care applications. Helsinki, Finland, July
    • Davis J, Lantz E, Page D, et al. Machine learning for personalized medicine: will this drug give me a heart attack? International Conference of Machine Learning (ICML); workshop on machine learning in health care applications. Helsinki, Finland, July, 2008.
    • (2008) International Conference of Machine Learning (ICML)
    • Davis, J.1    Lantz, E.2    Page, D.3
  • 24
    • 84919854789 scopus 로고    scopus 로고
    • Relational rule-learning on high-dimensional medical data
    • Neural and information processing systems (NIPS) workshop on predictive models for personalized medicine, Whistler, BC
    • Berg B, Peissig P, Page D. Relational rule-learning on high-dimensional medical data, neural and information processing systems (NIPS) workshop on predictive models for personalized medicine, Whistler, BC; 2010.
    • (2010)
    • Berg, B.1    Peissig, P.2    Page, D.3
  • 25
    • 84880787212 scopus 로고    scopus 로고
    • Learning to predict post-hospitalization VTE risk from EHR data
    • Kawaler E., Cobian A., Peissig P., et al. Learning to predict post-hospitalization VTE risk from EHR data. AMIA Annu Symp Proc 2012, 2012:436-445.
    • (2012) AMIA Annu Symp Proc , vol.2012 , pp. 436-445
    • Kawaler, E.1    Cobian, A.2    Peissig, P.3
  • 26
    • 0011177327 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin Heidelberg, S. Dzeroski, N. Lavrac (Eds.)
    • Relational data mining 2001, Springer-Verlag, Berlin Heidelberg. S. Dzeroski, N. Lavrac (Eds.).
    • (2001) Relational data mining
  • 28
    • 84863123646 scopus 로고    scopus 로고
    • Importance of multi-modal approaches to effectively identify cataract cases from electronic health records
    • Peissig P.L., Rasmussen L.V., Berg R.L., et al. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records. J Am Med Inform Assoc 2012, 19:225-234.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 225-234
    • Peissig, P.L.1    Rasmussen, L.V.2    Berg, R.L.3
  • 30
    • 34447329864 scopus 로고    scopus 로고
    • Electronic health record use and the quality of ambulatory care in the United States
    • Linder J.A., Ma J., Bates D.W., et al. Electronic health record use and the quality of ambulatory care in the United States. Arch Intern Med 2007, 167:1400-1405.
    • (2007) Arch Intern Med , vol.167 , pp. 1400-1405
    • Linder, J.A.1    Ma, J.2    Bates, D.W.3
  • 32
    • 0025975160 scopus 로고
    • The case-crossover design: a method for studying transient effects on the risk of acute events
    • Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 1991, 133(2):144-153.
    • (1991) Am J Epidemiol , vol.133 , Issue.2 , pp. 144-153
    • Maclure, M.1
  • 33
    • 84919854786 scopus 로고    scopus 로고
    • WEKA. http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/PART.html.
  • 36
    • 0001330342 scopus 로고
    • Fast effective rule induction. In: Twelfth international conference on machine learning (ML95)
    • Cohen WW. Fast effective rule induction. In: Twelfth international conference on machine learning (ML95); 1995. p. 115-23.
    • (1995) , pp. 115-123
    • Cohen, W.W.1
  • 37
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: visualizing classifier performance in R
    • Sing T., Sander O., Beerenwinkel N., et al. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21:3940-3941.
    • (2005) Bioinformatics , vol.21 , pp. 3940-3941
    • Sing, T.1    Sander, O.2    Beerenwinkel, N.3
  • 38
    • 84857146745 scopus 로고    scopus 로고
    • Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study
    • Kho A.N., Hayes M.G., Rasmussen-Torvik L., et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc 2012, 19:212-218.
    • (2012) J Am Med Inform Assoc , vol.19 , pp. 212-218
    • Kho, A.N.1    Hayes, M.G.2    Rasmussen-Torvik, L.3
  • 39
    • 80053896220 scopus 로고    scopus 로고
    • Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome-and phenome-wide studies
    • Denny J.C., Crawford D.C., Ritchie M.D., et al. Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome-and phenome-wide studies. Am J Hum Genet 2011, 89:529-542.
    • (2011) Am J Hum Genet , vol.89 , pp. 529-542
    • Denny, J.C.1    Crawford, D.C.2    Ritchie, M.D.3
  • 40
    • 84860871724 scopus 로고    scopus 로고
    • The accuracy of using integrated electronic health care data to identify patients with undiagnosed diabetes mellitus
    • Ho M.L., Lawrence N., van Walraven C., et al. The accuracy of using integrated electronic health care data to identify patients with undiagnosed diabetes mellitus. J Eval Clin Pract 2012, 18:606-611.
    • (2012) J Eval Clin Pract , vol.18 , pp. 606-611
    • Ho, M.L.1    Lawrence, N.2    van Walraven, C.3
  • 41
    • 84856895711 scopus 로고    scopus 로고
    • Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management
    • Kudyakov R., Bowen J., Ewen E., et al. Electronic health record use to classify patients with newly diagnosed versus preexisting type 2 diabetes: infrastructure for comparative effectiveness research and population health management. Popul Health Manag 2012, 15:3-11.
    • (2012) Popul Health Manag , vol.15 , pp. 3-11
    • Kudyakov, R.1    Bowen, J.2    Ewen, E.3
  • 42
    • 79251581866 scopus 로고    scopus 로고
    • The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies
    • McCarty C.A., Chisholm R.L., Chute C.G., et al. The eMERGE network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics 2011, 4:13.
    • (2011) BMC Med Genomics , vol.4 , pp. 13
    • McCarty, C.A.1    Chisholm, R.L.2    Chute, C.G.3
  • 43
    • 0028225197 scopus 로고
    • Umbilical cord blood erythroblast count as an index of intrauterine hypoxia
    • Thilaganathan B., Athanasiou S., Ozmen S., et al. Umbilical cord blood erythroblast count as an index of intrauterine hypoxia. Arch Dis Child Fetal Neonatal Ed 1994, 70:F192-F194.
    • (1994) Arch Dis Child Fetal Neonatal Ed , vol.70 , pp. F192-F194
    • Thilaganathan, B.1    Athanasiou, S.2    Ozmen, S.3
  • 44
    • 33847644460 scopus 로고    scopus 로고
    • Automated identification of adverse events related to central venous catheters
    • Penz J.F., Wilcox A.B., Hurdle J.F. Automated identification of adverse events related to central venous catheters. J Biomed Inform 2007, 40:174-182.
    • (2007) J Biomed Inform , vol.40 , pp. 174-182
    • Penz, J.F.1    Wilcox, A.B.2    Hurdle, J.F.3
  • 45
    • 84964921907 scopus 로고    scopus 로고
    • Combining structured and free-text data for automatic coding of patient outcomes
    • Saria S., McElvain G., Rajani A.K., et al. Combining structured and free-text data for automatic coding of patient outcomes. AMIA Annu Symp Proc 2010, 2010:712-716.
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 712-716
    • Saria, S.1    McElvain, G.2    Rajani, A.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.