메뉴 건너뛰기




Volumn 120, Issue 43, 2016, Pages 24697-24705

Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; CRYSTALLINE MATERIALS; DEHYDROGENATION; DENSITY FUNCTIONAL THEORY; DESIGN FOR TESTABILITY; HYDROGEN PRODUCTION; HYDROGEN STORAGE; JAVA PROGRAMMING LANGUAGE; MESOPOROUS MATERIALS; METALS; ORGANOMETALLICS;

EID: 84994424509     PISSN: 19327447     EISSN: 19327455     Source Type: Journal    
DOI: 10.1021/acs.jpcc.6b06381     Document Type: Article
Times cited : (40)

References (99)
  • 1
    • 84883066942 scopus 로고    scopus 로고
    • The Chemistry and Applications of Metal-Organic Frameworks
    • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks Science 2013, 341, 1230444 10.1126/science.1230444
    • (2013) Science , vol.341 , pp. 1230444
    • Furukawa, H.1    Cordova, K.E.2    O'Keeffe, M.3    Yaghi, O.M.4
  • 2
    • 65149084322 scopus 로고    scopus 로고
    • Hydrogen Storage in Metal-Organic Frameworks
    • Murray, L. J.; Dinca, M.; Long, J. R. Hydrogen Storage in Metal-Organic Frameworks Chem. Soc. Rev. 2009, 38, 1294-1314 10.1039/b802256a
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 1294-1314
    • Murray, L.J.1    Dinca, M.2    Long, J.R.3
  • 3
    • 84863011092 scopus 로고    scopus 로고
    • Hydrogen Storage in Metal-Organic Frameworks
    • Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen Storage in Metal-Organic Frameworks Chem. Rev. 2012, 112, 782-835 10.1021/cr200274s
    • (2012) Chem. Rev. , vol.112 , pp. 782-835
    • Suh, M.P.1    Park, H.J.2    Prasad, T.K.3    Lim, D.-W.4
  • 4
    • 84863011015 scopus 로고    scopus 로고
    • Metal-Organic Frameworks for Separations
    • Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for Separations Chem. Rev. 2012, 112, 869-932 10.1021/cr200190s
    • (2012) Chem. Rev. , vol.112 , pp. 869-932
    • Li, J.-R.1    Sculley, J.2    Zhou, H.-C.3
  • 6
    • 84902477634 scopus 로고    scopus 로고
    • Metal-Organic Frameworks for Air Purification of Toxic Chemicals
    • DeCoste, J. B.; Peterson, G. W. Metal-Organic Frameworks for Air Purification of Toxic Chemicals Chem. Rev. 2014, 114, 5695-5727 10.1021/cr4006473
    • (2014) Chem. Rev. , vol.114 , pp. 5695-5727
    • DeCoste, J.B.1    Peterson, G.W.2
  • 9
    • 70349989734 scopus 로고    scopus 로고
    • Metal-Organic Frameworks: Opportunities for Catalysis
    • Farrusseng, D.; Aguado, S.; Pinel, C. Metal-Organic Frameworks: Opportunities for Catalysis Angew. Chem., Int. Ed. 2009, 48, 7502-7513 10.1002/anie.200806063
    • (2009) Angew. Chem., Int. Ed. , vol.48 , pp. 7502-7513
    • Farrusseng, D.1    Aguado, S.2    Pinel, C.3
  • 10
    • 84878031198 scopus 로고    scopus 로고
    • Metal-Organic Frameworks as Catalysts: The Role of Metal Active Sites
    • Valvekens, P.; Vermoortele, F.; De Vos, D. Metal-Organic Frameworks as Catalysts: The Role of Metal Active Sites Catal. Sci. Technol. 2013, 3, 1435-1445 10.1039/c3cy20813c
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 1435-1445
    • Valvekens, P.1    Vermoortele, F.2    De Vos, D.3
  • 11
    • 84940064424 scopus 로고    scopus 로고
    • Metal-Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations
    • Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal-Organic Frameworks: Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations Chem. Soc. Rev. 2015, 44, 6804-6849 10.1039/C4CS00395K
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 6804-6849
    • Chughtai, A.H.1    Ahmad, N.2    Younus, H.A.3    Laypkov, A.4    Verpoort, F.5
  • 12
    • 84959499634 scopus 로고    scopus 로고
    • Origin of Highly Active Metal-Organic Framework Catalysts: Defects? Defects!
    • Canivet, J.; Vandichel, M.; Farrusseng, D. Origin of Highly Active Metal-Organic Framework Catalysts: Defects? Defects! Dalton Trans. 2016, 45, 4090-4099 10.1039/C5DT03522H
    • (2016) Dalton Trans. , vol.45 , pp. 4090-4099
    • Canivet, J.1    Vandichel, M.2    Farrusseng, D.3
  • 15
    • 84862163662 scopus 로고    scopus 로고
    • Discovery, Development, and Functionalization of Zr(IV)-Based Metal-Organic Frameworks
    • Kim, M.; Cohen, S. M. Discovery, Development, and Functionalization of Zr(IV)-Based Metal-Organic Frameworks CrystEngComm 2012, 14, 4096-4104 10.1039/C2CE06491J
    • (2012) CrystEngComm , vol.14 , pp. 4096-4104
    • Kim, M.1    Cohen, S.M.2
  • 16
    • 84966937425 scopus 로고    scopus 로고
    • Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications
    • Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications Chem. Soc. Rev. 2016, 45, 2327-2367 10.1039/C5CS00837A
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 2327-2367
    • Bai, Y.1    Dou, Y.2    Xie, L.-H.3    Rutledge, W.4    Li, J.-R.5    Zhou, H.-C.6
  • 17
    • 84971207561 scopus 로고    scopus 로고
    • Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks
    • Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks Nat. Rev. Mater. 2016, 1, 15018 10.1038/natrevmats.2015.18
    • (2016) Nat. Rev. Mater. , vol.1 , pp. 15018
    • Howarth, A.J.1    Liu, Y.2    Li, P.3    Li, Z.4    Wang, T.C.5    Hupp, J.T.6    Farha, O.K.7
  • 24
    • 84940032830 scopus 로고    scopus 로고
    • Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition
    • Peters, A. W.; Li, Z.; Farha, O. K.; Hupp, J. T. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition ACS Nano 2015, 9, 8484-8490 10.1021/acsnano.5b03429
    • (2015) ACS Nano , vol.9 , pp. 8484-8490
    • Peters, A.W.1    Li, Z.2    Farha, O.K.3    Hupp, J.T.4
  • 25
    • 84959161024 scopus 로고    scopus 로고
    • Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach
    • Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K. Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach Chem. Mater. 2016, 28, 1213-1219 10.1021/acs.chemmater.5b04887
    • (2016) Chem. Mater. , vol.28 , pp. 1213-1219
    • Klet, R.C.1    Wang, T.C.2    Fernandez, L.E.3    Truhlar, D.G.4    Hupp, J.T.5    Farha, O.K.6
  • 27
    • 84934924877 scopus 로고    scopus 로고
    • Metal-Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
    • Yang, D.; Odoh, S. O.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. Metal-Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes J. Am. Chem. Soc. 2015, 137, 7391-7396 10.1021/jacs.5b02956
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 7391-7396
    • Yang, D.1    Odoh, S.O.2    Wang, T.C.3    Farha, O.K.4    Hupp, J.T.5    Cramer, C.J.6    Gagliardi, L.7    Gates, B.C.8
  • 28
    • 84953318854 scopus 로고    scopus 로고
    • 6 Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts
    • 6 Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts ACS Catal. 2016, 6, 235-247 10.1021/acscatal.5b02243
    • (2016) ACS Catal. , vol.6 , pp. 235-247
    • Yang, D.1    Odoh, S.O.2    Borycz, J.3    Wang, T.C.4    Farha, O.K.5    Hupp, J.T.6    Cramer, C.J.7    Gagliardi, L.8    Gates, B.C.9
  • 30
    • 77955296274 scopus 로고    scopus 로고
    • The Give and Take of Alcohol Activation
    • Watson, A. J. A.; Williams, J. M. J. The Give and Take of Alcohol Activation Science 2010, 329, 635-636 10.1126/science.1191843
    • (2010) Science , vol.329 , pp. 635-636
    • Watson, A.J.A.1    Williams, J.M.J.2
  • 31
    • 84880418740 scopus 로고    scopus 로고
    • Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis
    • Gunanathan, C.; Milstein, D. Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis Science 2013, 341, 1229712-1-11 10.1126/science.1229712
    • (2013) Science , vol.341 , pp. 12297121-122971211
    • Gunanathan, C.1    Milstein, D.2
  • 32
    • 77349090405 scopus 로고    scopus 로고
    • Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis
    • Dobereiner, G. E.; Crabtree, R. H. Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis Chem. Rev. 2010, 110, 681-703 10.1021/cr900202j
    • (2010) Chem. Rev. , vol.110 , pp. 681-703
    • Dobereiner, G.E.1    Crabtree, R.H.2
  • 33
    • 77953317775 scopus 로고    scopus 로고
    • Hydrogen Generation from Formic Acid and Alcohols using Homogeneous Catalysts
    • Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen Generation from Formic Acid and Alcohols using Homogeneous Catalysts Chem. Soc. Rev. 2010, 39, 81-88 10.1039/B904495G
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 81-88
    • Johnson, T.C.1    Morris, D.J.2    Wills, M.3
  • 34
    • 84904549762 scopus 로고    scopus 로고
    • Molecular Catalysts for Hydrogen Production from Alcohols
    • Trincado, M.; Banerjee, D.; Grützmacher, H. Molecular Catalysts for Hydrogen Production from Alcohols Energy Environ. Sci. 2014, 7, 2464-2503 10.1039/C4EE00389F
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2464-2503
    • Trincado, M.1    Banerjee, D.2    Grützmacher, H.3
  • 36
    • 84874708061 scopus 로고    scopus 로고
    • Low-Temperature Aqueous-Phase Methanol Dehydrogenation to Hydrogen and Carbon Dioxide
    • Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Low-Temperature Aqueous-Phase Methanol Dehydrogenation to Hydrogen and Carbon Dioxide Nature 2013, 495, 85-89 10.1038/nature11891
    • (2013) Nature , vol.495 , pp. 85-89
    • Nielsen, M.1    Alberico, E.2    Baumann, W.3    Drexler, H.-J.4    Junge, H.5    Gladiali, S.6    Beller, M.7
  • 37
    • 58249100147 scopus 로고    scopus 로고
    • Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines
    • Zweifel, T.; Naubron, J.-V.; Grützmacher, H. Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines Angew. Chem., Int. Ed. 2009, 48, 559-563 10.1002/anie.200804757
    • (2009) Angew. Chem., Int. Ed. , vol.48 , pp. 559-563
    • Zweifel, T.1    Naubron, J.-V.2    Grützmacher, H.3
  • 38
    • 84857733820 scopus 로고    scopus 로고
    • Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp∗Ir Catalysts Bearing a Functional Bipyridine Ligand
    • Kawahara, R.; Fujita, K.; Yamaguchi, R. Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp∗Ir Catalysts Bearing a Functional Bipyridine Ligand J. Am. Chem. Soc. 2012, 134, 3643-3646 10.1021/ja210857z
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 3643-3646
    • Kawahara, R.1    Fujita, K.2    Yamaguchi, R.3
  • 41
    • 84902682677 scopus 로고    scopus 로고
    • A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles
    • Chakraborty, S.; Brennessel, W. W.; Jones, W. D. A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles J. Am. Chem. Soc. 2014, 136, 8564-8567 10.1021/ja504523b
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8564-8567
    • Chakraborty, S.1    Brennessel, W.W.2    Jones, W.D.3
  • 42
    • 84907710088 scopus 로고    scopus 로고
    • Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols
    • Song, H.; Kang, B.; Hong, S. H. Fe-Catalyzed Acceptorless Dehydrogenation of Secondary Benzylic Alcohols ACS Catal. 2014, 4, 2889-2895 10.1021/cs5007316
    • (2014) ACS Catal. , vol.4 , pp. 2889-2895
    • Song, H.1    Kang, B.2    Hong, S.H.3
  • 44
    • 84927139068 scopus 로고    scopus 로고
    • Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
    • Bielinski, E. A.; Förster, M.; Zhang, Y.; Bernskoetter, W. H.; Hazari, N.; Holthausen, M. C. Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst ACS Catal. 2015, 5, 2404-2415 10.1021/acscatal.5b00137
    • (2015) ACS Catal. , vol.5 , pp. 2404-2415
    • Bielinski, E.A.1    Förster, M.2    Zhang, Y.3    Bernskoetter, W.H.4    Hazari, N.5    Holthausen, M.C.6
  • 46
    • 84873400297 scopus 로고    scopus 로고
    • Cobalt-Catalyzed Acceptorless Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and Amines
    • Zhang, G.; Hanson, S. K. Cobalt-Catalyzed Acceptorless Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and Amines Org. Lett. 2013, 15, 650-653 10.1021/ol303479f
    • (2013) Org. Lett. , vol.15 , pp. 650-653
    • Zhang, G.1    Hanson, S.K.2
  • 47
    • 84878945423 scopus 로고    scopus 로고
    • Understanding the Mechanisms of Cobalt-Catalyzed Hydrogenation and Dehydrogenation Reactions
    • Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. Understanding the Mechanisms of Cobalt-Catalyzed Hydrogenation and Dehydrogenation Reactions J. Am. Chem. Soc. 2013, 135, 8668-8681 10.1021/ja402679a
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 8668-8681
    • Zhang, G.1    Vasudevan, K.V.2    Scott, B.L.3    Hanson, S.K.4
  • 48
    • 84946866072 scopus 로고    scopus 로고
    • Acceptorless, Reversible Dehydrogenation and Hydrogenation of N-Heterocycles with a Cobalt Pincer Catalyst
    • Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D. Acceptorless, Reversible Dehydrogenation and Hydrogenation of N-Heterocycles with a Cobalt Pincer Catalyst ACS Catal. 2015, 5, 6350-6354 10.1021/acscatal.5b02002
    • (2015) ACS Catal. , vol.5 , pp. 6350-6354
    • Xu, R.1    Chakraborty, S.2    Yuan, H.3    Jones, W.D.4
  • 49
    • 84946811401 scopus 로고    scopus 로고
    • A Single Nickel Catalyst for the Acceptorless Dehydrogenation of Alcohols and Hydrogenation of Carbonyl Compounds
    • Chakraborty, S.; Piszel, P. E.; Brennessel, W. W.; Jones, W. D. A Single Nickel Catalyst for the Acceptorless Dehydrogenation of Alcohols and Hydrogenation of Carbonyl Compounds Organometallics 2015, 34, 5203-5206 10.1021/acs.organomet.5b00824
    • (2015) Organometallics , vol.34 , pp. 5203-5206
    • Chakraborty, S.1    Piszel, P.E.2    Brennessel, W.W.3    Jones, W.D.4
  • 50
    • 84890334559 scopus 로고    scopus 로고
    • A Self-Promotion Mechanism for Efficient Dehydrogenation of Ethanol Catalyzed by Pincer Ruthenium and Iron Complexes: Aliphatic versus Aromatic Ligands
    • Yang, X. A Self-Promotion Mechanism for Efficient Dehydrogenation of Ethanol Catalyzed by Pincer Ruthenium and Iron Complexes: Aliphatic versus Aromatic Ligands ACS Catal. 2013, 3, 2684-2688 10.1021/cs400862x
    • (2013) ACS Catal. , vol.3 , pp. 2684-2688
    • Yang, X.1
  • 51
    • 84929440675 scopus 로고    scopus 로고
    • A Comparative Computationally Study about the Defined M(II) Pincer Hydrogenation Catalysts (M = Fe, Ru, Os)
    • Jiao, H.; Junge, K.; Alberico, E.; Beller, M. A Comparative Computationally Study about the Defined M(II) Pincer Hydrogenation Catalysts (M = Fe, Ru, Os) J. Comput. Chem. 2016, 37, 168-176 10.1002/jcc.23944
    • (2016) J. Comput. Chem. , vol.37 , pp. 168-176
    • Jiao, H.1    Junge, K.2    Alberico, E.3    Beller, M.4
  • 53
    • 84953308379 scopus 로고    scopus 로고
    • Computational Mechanistic Study of the Hydrogenation and Dehydrogenation Reactions Catalyzed by Cobalt Pincer Complexes
    • Jing, Y.; Chen, X.; Yang, X. Computational Mechanistic Study of the Hydrogenation and Dehydrogenation Reactions Catalyzed by Cobalt Pincer Complexes Organometallics 2015, 34, 5716-5722 10.1021/acs.organomet.5b00798
    • (2015) Organometallics , vol.34 , pp. 5716-5722
    • Jing, Y.1    Chen, X.2    Yang, X.3
  • 54
    • 84873292041 scopus 로고    scopus 로고
    • Heterogeneous Cobalt Catalysts for the Acceptorless Dehydrogenation of Alcohols
    • Shimizu, K.-I.; Kon, K.; Seto, M.; Shimura, K.; Yamazaki, H.; Kondo, J. N. Heterogeneous Cobalt Catalysts for the Acceptorless Dehydrogenation of Alcohols Green Chem. 2013, 15, 418-424 10.1039/C2GC36555C
    • (2013) Green Chem. , vol.15 , pp. 418-424
    • Shimizu, K.-I.1    Kon, K.2    Seto, M.3    Shimura, K.4    Yamazaki, H.5    Kondo, J.N.6
  • 55
    • 0002110925 scopus 로고
    • Dehydrogenation of Cyclohexanol to Cyclohexanone on Supported Nickel Catalysts
    • Uemichi, Y.; Sakai, T.; Kanazuka, T. Dehydrogenation of Cyclohexanol to Cyclohexanone on Supported Nickel Catalysts Chem. Lett. 1989, 18, 777-780 10.1246/cl.1989.777
    • (1989) Chem. Lett. , vol.18 , pp. 777-780
    • Uemichi, Y.1    Sakai, T.2    Kanazuka, T.3
  • 56
    • 54749150541 scopus 로고    scopus 로고
    • Copper Nanoparticles on Hydrotalcite as a Heterogeneous Catalyst for Oxidant-Free Dehydrogenation of Alcohols
    • Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Copper Nanoparticles on Hydrotalcite as a Heterogeneous Catalyst for Oxidant-Free Dehydrogenation of Alcohols Chem. Commun. 2008, 4804-4806 10.1039/b809012b
    • (2008) Chem. Commun. , pp. 4804-4806
    • Mitsudome, T.1    Mikami, Y.2    Ebata, K.3    Mizugaki, T.4    Jitsukawa, K.5    Kaneda, K.6
  • 57
    • 84954508523 scopus 로고    scopus 로고
    • Titanium Dioxide Reinforced Metal-Organic Framework Pd Catalysts: Activity and Reusability Enhancement in Alcohol Dehydrogenation Reactions and Improved Photocatalytic Performance
    • Tilgner, D.; Friedrich, M.; Hermannsdörfer, J.; Kempe, R. Titanium Dioxide Reinforced Metal-Organic Framework Pd Catalysts: Activity and Reusability Enhancement in Alcohol Dehydrogenation Reactions and Improved Photocatalytic Performance ChemCatChem 2015, 7, 3916-3922 10.1002/cctc.201500747
    • (2015) ChemCatChem , vol.7 , pp. 3916-3922
    • Tilgner, D.1    Friedrich, M.2    Hermannsdörfer, J.3    Kempe, R.4
  • 58
    • 79961162183 scopus 로고    scopus 로고
    • Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage
    • Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage J. Am. Chem. Soc. 2011, 133, 11822-11825 10.1021/ja200122f
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 11822-11825
    • Gu, X.1    Lu, Z.-H.2    Jiang, H.-L.3    Akita, T.4    Xu, Q.5
  • 59
    • 84889780891 scopus 로고    scopus 로고
    • Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature
    • Martis, M.; Mori, K.; Fujiwara, K.; Ahn, W.-S.; Yamashita, H. Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature J. Phys. Chem. C 2013, 117, 22805-22810 10.1021/jp4069027
    • (2013) J. Phys. Chem. C , vol.117 , pp. 22805-22810
    • Martis, M.1    Mori, K.2    Fujiwara, K.3    Ahn, W.-S.4    Yamashita, H.5
  • 60
    • 84928920398 scopus 로고    scopus 로고
    • An Efficient Room Temperature Core-Shell AgPd@MOF Catalyst for Hydrogen Production from Formic Acid
    • Ke, F.; Wang, L.; Zhu, J. An Efficient Room Temperature Core-Shell AgPd@MOF Catalyst for Hydrogen Production from Formic Acid Nanoscale 2015, 7, 8321-8325 10.1039/C4NR07582J
    • (2015) Nanoscale , vol.7 , pp. 8321-8325
    • Ke, F.1    Wang, L.2    Zhu, J.3
  • 61
    • 84948773839 scopus 로고    scopus 로고
    • Functionalized Ruthenium-Phosphine Metal-Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid
    • Redondo, A. B.; Morel, F. L.; Ranocchiari, M.; van Bokhoven, J. A. Functionalized Ruthenium-Phosphine Metal-Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid ACS Catal. 2015, 5, 7099-7103 10.1021/acscatal.5b01987
    • (2015) ACS Catal. , vol.5 , pp. 7099-7103
    • Redondo, A.B.1    Morel, F.L.2    Ranocchiari, M.3    Van Bokhoven, J.A.4
  • 62
    • 84931037811 scopus 로고    scopus 로고
    • Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks
    • Odoh, S. O.; Cramer, C. J.; Truhlar, D. G.; Gagliardi, L. Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks Chem. Rev. 2015, 115, 6051-6111 10.1021/cr500551h
    • (2015) Chem. Rev. , vol.115 , pp. 6051-6111
    • Odoh, S.O.1    Cramer, C.J.2    Truhlar, D.G.3    Gagliardi, L.4
  • 63
    • 84939863730 scopus 로고    scopus 로고
    • Computational Characterization and Prediction of Metal-Organic Framework Properties
    • Coudert, F.-X.; Fuchs, A. H. Computational Characterization and Prediction of Metal-Organic Framework Properties Coord. Chem. Rev. 2016, 307, 211 10.1016/j.ccr.2015.08.001
    • (2016) Coord. Chem. Rev. , vol.307 , pp. 211
    • Coudert, F.-X.1    Fuchs, A.H.2
  • 64
    • 79953706002 scopus 로고    scopus 로고
    • Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
    • Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory Chem. Mater. 2011, 23, 1700-1718 10.1021/cm1022882
    • (2011) Chem. Mater. , vol.23 , pp. 1700-1718
    • Valenzano, L.1    Civalleri, B.2    Chavan, S.3    Bordiga, S.4    Nilsen, M.H.5    Jakobsen, S.6    Lillerud, K.P.7    Lamberti, C.8
  • 67
    • 84915820530 scopus 로고    scopus 로고
    • Active Site Engineering in UiO-66 Type Metal-Organic Frameworks by Intentional Creation of Defects: A Theoretical Rationalization
    • Vandichel, M.; Hajek, J.; Vermoortele, F.; Waroquier, M.; De Vos, D. E.; Van Speybroeck, V. Active Site Engineering in UiO-66 Type Metal-Organic Frameworks by Intentional Creation of Defects: A Theoretical Rationalization CrystEngComm 2015, 17, 395-406 10.1039/C4CE01672F
    • (2015) CrystEngComm , vol.17 , pp. 395-406
    • Vandichel, M.1    Hajek, J.2    Vermoortele, F.3    Waroquier, M.4    De Vos, D.E.5    Van Speybroeck, V.6
  • 68
    • 84969259817 scopus 로고    scopus 로고
    • Dynamic Acidity in Defective UiO-66
    • Ling, S.; Slater, B. Dynamic Acidity in Defective UiO-66 Chem. Sci. 2016, 7, 4706-4712 10.1039/C5SC04953A
    • (2016) Chem. Sci. , vol.7 , pp. 4706-4712
    • Ling, S.1    Slater, B.2
  • 69
    • 84955440137 scopus 로고    scopus 로고
    • Evaluation of Brønsted Acidity and Proton Topology in Zr- and Hf-Based Metal-Organic Frameworks Using Potentiometric Acid-Base Titration
    • Klet, R. C.; Liu, Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Evaluation of Brønsted Acidity and Proton Topology in Zr- and Hf-Based Metal-Organic Frameworks Using Potentiometric Acid-Base Titration J. Mater. Chem. A 2016, 4, 1479-1485 10.1039/C5TA07687K
    • (2016) J. Mater. Chem. A , vol.4 , pp. 1479-1485
    • Klet, R.C.1    Liu, Y.2    Wang, T.C.3    Hupp, J.T.4    Farha, O.K.5
  • 70
    • 70549084886 scopus 로고    scopus 로고
    • Density Functional Theory for Transition Metals and Transition Metal Chemistry
    • Cramer, C. J.; Truhlar, D. G. Density Functional Theory for Transition Metals and Transition Metal Chemistry Phys. Chem. Chem. Phys. 2009, 11, 10757-10816 10.1039/b907148b
    • (2009) Phys. Chem. Chem. Phys. , vol.11 , pp. 10757-10816
    • Cramer, C.J.1    Truhlar, D.G.2
  • 71
    • 33845328066 scopus 로고    scopus 로고
    • A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions
    • Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions J. Chem. Phys. 2006, 125, 194101 10.1063/1.2370993
    • (2006) J. Chem. Phys. , vol.125 , pp. 194101
    • Zhao, Y.1    Truhlar, D.G.2
  • 72
    • 40549127108 scopus 로고    scopus 로고
    • Density Functionals with Broad Applicability in Chemistry
    • Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry Acc. Chem. Res. 2008, 41, 157-167 10.1021/ar700111a
    • (2008) Acc. Chem. Res. , vol.41 , pp. 157-167
    • Zhao, Y.1    Truhlar, D.G.2
  • 73
    • 78651236562 scopus 로고    scopus 로고
    • Applications and Validations of the Minnesota Density Functionals
    • Zhao, Y.; Truhlar, D. G. Applications and Validations of the Minnesota Density Functionals Chem. Phys. Lett. 2011, 502, 1-13 10.1016/j.cplett.2010.11.060
    • (2011) Chem. Phys. Lett. , vol.502 , pp. 1-13
    • Zhao, Y.1    Truhlar, D.G.2
  • 74
    • 47149115671 scopus 로고    scopus 로고
    • Benchmark Data for Interactions in Zeolite Model Complexes and Their Use for Assessment and Validation of Electronic Structure Methods
    • Zhao, Y.; Truhlar, D. G. Benchmark Data for Interactions in Zeolite Model Complexes and Their Use for Assessment and Validation of Electronic Structure Methods J. Phys. Chem. C 2008, 112, 6860-6868 10.1021/jp7112363
    • (2008) J. Phys. Chem. C , vol.112 , pp. 6860-6868
    • Zhao, Y.1    Truhlar, D.G.2
  • 76
    • 11744322674 scopus 로고
    • Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements
    • Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements Theor. Chim. Acta 1990, 77, 123-141 10.1007/BF01114537
    • (1990) Theor. Chim. Acta , vol.77 , pp. 123-141
    • Andrae, D.1    Haeussermann, U.2    Dolg, M.3    Stoll, H.4    Preuss, H.5
  • 77
    • 0347170005 scopus 로고
    • Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
    • Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules J. Chem. Phys. 1972, 56, 2257-2261 10.1063/1.1677527
    • (1972) J. Chem. Phys. , vol.56 , pp. 2257-2261
    • Hehre, W.J.1    Ditchfield, R.2    Pople, J.A.3
  • 78
    • 33748545144 scopus 로고
    • The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies
    • Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies Theor. Chim. Acta 1973, 28, 213-222 10.1007/BF00533485
    • (1973) Theor. Chim. Acta , vol.28 , pp. 213-222
    • Hariharan, P.C.1    Pople, J.A.2
  • 79
    • 83455219492 scopus 로고    scopus 로고
    • Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation
    • Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation J. Phys. Chem. B 2011, 115, 14556-14562 10.1021/jp205508z
    • (2011) J. Phys. Chem. B , vol.115 , pp. 14556-14562
    • Ribeiro, R.F.1    Marenich, A.V.2    Cramer, C.J.3    Truhlar, D.G.4
  • 80
    • 66349120487 scopus 로고    scopus 로고
    • Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
    • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions J. Phys. Chem. B 2009, 113, 6378-6396 10.1021/jp810292n
    • (2009) J. Phys. Chem. B , vol.113 , pp. 6378-6396
    • Marenich, A.V.1    Cramer, C.J.2    Truhlar, D.G.3
  • 81
    • 0000189651 scopus 로고
    • Density-Functional Thermochemistry. III. The Role of Exact Exchange
    • Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange J. Chem. Phys. 1993, 98, 5648-5652 10.1063/1.464913
    • (1993) J. Chem. Phys. , vol.98 , pp. 5648-5652
    • Becke, A.D.1
  • 82
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865-3868 10.1103/PhysRevLett.77.3865
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865-3868
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 83
    • 4944232881 scopus 로고    scopus 로고
    • Errata: Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Errata: Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1997, 78, 1396 10.1103/PhysRevLett.78.1396
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 1396
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 84
    • 77951680464 scopus 로고    scopus 로고
    • A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu
    • Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu J. Chem. Phys. 2010, 132, 154104 10.1063/1.3382344
    • (2010) J. Chem. Phys. , vol.132 , pp. 154104
    • Grimme, S.1    Antony, J.2    Ehrlich, S.3    Krieg, H.4
  • 85
    • 0001475454 scopus 로고    scopus 로고
    • Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model
    • Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model J. Chem. Phys. 1999, 110, 6158-6170 10.1063/1.478522
    • (1999) J. Chem. Phys. , vol.110 , pp. 6158-6170
    • Adamo, C.1    Barone, V.2
  • 86
    • 4243553426 scopus 로고
    • Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior
    • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098-3100 10.1103/PhysRevA.38.3098
    • (1988) Phys. Rev. A: At., Mol., Opt. Phys. , vol.38 , pp. 3098-3100
    • Becke, A.D.1
  • 87
    • 0345491105 scopus 로고
    • Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density
    • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789 10.1103/PhysRevB.37.785
    • (1988) Phys. Rev. B: Condens. Matter Mater. Phys. , vol.37 , pp. 785-789
    • Lee, C.1    Yang, W.2    Parr, R.G.3
  • 88
    • 33751157732 scopus 로고
    • Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
    • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields J. Phys. Chem. 1994, 98, 11623-11627 10.1021/j100096a001
    • (1994) J. Phys. Chem. , vol.98 , pp. 11623-11627
    • Stephens, P.J.1    Devlin, F.J.2    Chabalowski, C.F.3    Frisch, M.J.4
  • 89
    • 43049141516 scopus 로고    scopus 로고
    • The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals
    • Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals Theor. Chem. Acc. 2008, 120, 215-241 10.1007/s00214-007-0310-x
    • (2008) Theor. Chem. Acc. , vol.120 , pp. 215-241
    • Zhao, Y.1    Truhlar, D.G.2
  • 90
    • 84994449556 scopus 로고    scopus 로고
    • note
    • Two imaginary frequencies were found for transition-states Fe-TS2-3 (1016i and 112i) and Co-TS4-5' (1601i and 19i), in which the first large values correspond with the associated chemical transformation. Despite heroic effort, the second one could not be removed, but little influence on the final energy is expected.
  • 91
    • 63049109560 scopus 로고    scopus 로고
    • Protonation of Transition-Metal Hydrides: A Not so Simple Process
    • Besora, M.; Lledós, A.; Maseras, F. Protonation of Transition-Metal Hydrides: A Not so Simple Process Chem. Soc. Rev. 2009, 38, 957-966 10.1039/b608404b
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 957-966
    • Besora, M.1    Lledós, A.2    Maseras, F.3
  • 93
    • 84994431449 scopus 로고    scopus 로고
    • note
    • 4 = (360° - (α + β))/141°, where α and β are the two largest angles of the four-coordinate species.
  • 95
    • 84994431429 scopus 로고    scopus 로고
    • note
    • The participation of additional water molecules cannot be ruled out, but such study is beyond the scope of the current work, and the low concentration of water under reaction conditions further reduces the energetic relevance of such species.
  • 96
    • 79951617253 scopus 로고    scopus 로고
    • How to Conceptualize Catalytic Cycles? the Energetic Span Model
    • Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model Acc. Chem. Res. 2011, 44, 101-110 10.1021/ar1000956
    • (2011) Acc. Chem. Res. , vol.44 , pp. 101-110
    • Kozuch, S.1    Shaik, S.2
  • 97
    • 79957554155 scopus 로고    scopus 로고
    • The Rate-Determining Step is Dead. Long Live the Rate-Determining State!
    • Kozuch, S.; Martin, J. M. L. The Rate-Determining Step is Dead. Long Live the Rate-Determining State! ChemPhysChem 2011, 12, 1413-1418 10.1002/cphc.201100137
    • (2011) ChemPhysChem , vol.12 , pp. 1413-1418
    • Kozuch, S.1    Martin, J.M.L.2
  • 98
    • 0344236526 scopus 로고
    • Parabolic Tunneling Calculations
    • Skodje, R. T.; Truhlar, D. G. Parabolic Tunneling Calculations J. Phys. Chem. 1981, 85, 624-628 10.1021/j150606a003
    • (1981) J. Phys. Chem. , vol.85 , pp. 624-628
    • Skodje, R.T.1    Truhlar, D.G.2
  • 99
    • 84946546575 scopus 로고    scopus 로고
    • Benchmarking Density Functional Theory Predictions of Framework Structures and Properties in a Chemically Diverse Test Set of Metal-Organic Frameworks
    • Nazarian, D.; Ganesh, P.; Sholl, D. S. Benchmarking Density Functional Theory Predictions of Framework Structures and Properties in a Chemically Diverse Test Set of Metal-Organic Frameworks J. Mater. Chem. A 2015, 3, 22432-22440 10.1039/C5TA03864B
    • (2015) J. Mater. Chem. A , vol.3 , pp. 22432-22440
    • Nazarian, D.1    Ganesh, P.2    Sholl, D.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.