-
1
-
-
58249111511
-
-
K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th compl. rev.ed., Wiley-VCH, Weinheim, 2003.
-
K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, 4th compl. rev.ed., Wiley-VCH, Weinheim, 2003.
-
-
-
-
5
-
-
4344568023
-
-
a) J. Zhang, M. Gandelman, L. J. W. Shimon, H. Rozenberg, D. Milstein, Organometallics 2004, 23, 4026;
-
(2004)
Organometallics
, vol.23
, pp. 4026
-
-
Zhang, J.1
Gandelman, M.2
Shimon, L.J.W.3
Rozenberg, H.4
Milstein, D.5
-
6
-
-
23744449879
-
-
b) J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2005, 127, 10840;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 10840
-
-
Zhang, J.1
Leitus, G.2
Ben-David, Y.3
Milstein, D.4
-
7
-
-
0344893535
-
-
for catalytic systems capable of dehydrogenating alcohols to symmetrical esters in the presence of a suitable hydrogen acceptor, see: c Y. Blum, Y. Shvo, J. Organomet. Chem. 1985, 282, C7;
-
for catalytic systems capable of dehydrogenating alcohols to symmetrical esters in the presence of a suitable hydrogen acceptor, see: c) Y. Blum, Y. Shvo, J. Organomet. Chem. 1985, 282, C7;
-
-
-
-
9
-
-
33845283406
-
-
e) S. I. Murahashi, T. Naota, K. Ito, Y. Maeda, H. Taki, J. Org. Chem. 1987, 52, 4319;
-
(1987)
J. Org. Chem
, vol.52
, pp. 4319
-
-
Murahashi, S.I.1
Naota, T.2
Ito, K.3
Maeda, Y.4
Taki, H.5
-
10
-
-
0037062896
-
-
f) T. Suzuki, K. Morita, M. Tsuchida, K. Hiroi, Org. Lett. 2002, 4, 2361;
-
(2002)
Org. Lett
, vol.4
, pp. 2361
-
-
Suzuki, T.1
Morita, K.2
Tsuchida, M.3
Hiroi, K.4
-
11
-
-
0346339649
-
-
g) R. H. Meijer, G. Ligthart, J. Meuldijk, J. Vekemans, L. A. Hulshof, A. M. Mills, H. Kooijman, A. L. Spek, Tetrahedron 2004, 60, 1065;
-
(2004)
Tetrahedron
, vol.60
, pp. 1065
-
-
Meijer, R.H.1
Ligthart, G.2
Meuldijk, J.3
Vekemans, J.4
Hulshof, L.A.5
Mills, A.M.6
Kooijman, H.7
Spek, A.L.8
-
12
-
-
20544468138
-
-
h) T. Suzuki, T. Yamada, T. Matsuo, K. Watanabe, T. Katoh, Synlett 2005, 1450;
-
(2005)
Synlett
, pp. 1450
-
-
Suzuki, T.1
Yamada, T.2
Matsuo, T.3
Watanabe, K.4
Katoh, T.5
-
13
-
-
54949099698
-
-
for a recent example with oxygen as the hydrogen acceptor, see i
-
for a recent example with oxygen as the hydrogen acceptor, see i) S. Arita, T. Koike, Y. Kayaki, T. Ikariya, Chem. Asian. J. 2008, 3, 1479.
-
(2008)
Chem. Asian. J
, vol.3
, pp. 1479
-
-
Arita, S.1
Koike, T.2
Kayaki, Y.3
Ikariya, T.4
-
14
-
-
34547896611
-
-
C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007, 317, 790.
-
(2007)
Science
, vol.317
, pp. 790
-
-
Gunanathan, C.1
Ben-David, Y.2
Milstein, D.3
-
17
-
-
27444444817
-
-
P. Maire, T. Büttner, F. Breher, P. Le Floch, H. Grützmacher, Angew. Chem. 2005, 117, 6477;
-
(2005)
Angew. Chem
, vol.117
, pp. 6477
-
-
Maire, P.1
Büttner, T.2
Breher, F.3
Le Floch, P.4
Grützmacher, H.5
-
19
-
-
54149099457
-
-
T. Zweifel, J. Naubron, T. Büttner, T. Ott, H. Grützmacher, Angew. Chem. 2008, 120, 3289;
-
(2008)
Angew. Chem
, vol.120
, pp. 3289
-
-
Zweifel, T.1
Naubron, J.2
Büttner, T.3
Ott, T.4
Grützmacher, H.5
-
21
-
-
0000787564
-
-
Oxidation potentials of aldehydes and ketones: a H. Adkins, R. M. Elofson, A. G. Rossow, C. C. Robinson, J. Am. Chem. Soc. 1949, 71, 3622;
-
Oxidation potentials of aldehydes and ketones: a) H. Adkins, R. M. Elofson, A. G. Rossow, C. C. Robinson, J. Am. Chem. Soc. 1949, 71, 3622;
-
-
-
-
22
-
-
28244483158
-
-
for other successful applications of cyclohexanone as hydrogen acceptor, see: b
-
for other successful applications of cyclohexanone as hydrogen acceptor, see: b) G. R. A. Adair, J. M. J. Williams, Chem. Commun. 2005, 5578;
-
(2005)
Chem. Commun
, pp. 5578
-
-
Adair, G.R.A.1
Williams, J.M.J.2
-
24
-
-
33846125646
-
-
We refined the protocol given by H. Rohit Ingle, N. K. Kala Raj, P. Manikandan, J. Mol. Catal. A 2007, 262, 52 and obtained excellent yields (see the Supporting Information for details).
-
We refined the protocol given by H. Rohit Ingle, N. K. Kala Raj, P. Manikandan, J. Mol. Catal. A 2007, 262, 52 and obtained excellent yields (see the Supporting Information for details).
-
-
-
-
25
-
-
58249112204
-
-
The dehydrogenation of primary alcohols to methyl esters under harsh reaction conditions using crotonitrile was described: N. A. Owston, A. J. Parker, J. M. J. Williams, Chem. Commun. 2008, 624
-
The dehydrogenation of primary alcohols to methyl esters under harsh reaction conditions using crotonitrile was described: N. A. Owston, A. J. Parker, J. M. J. Williams, Chem. Commun. 2008, 624.
-
-
-
-
27
-
-
58249121658
-
-
This coupling reaction proceeds with high efficiency because catalyst 2 converts methanol very slowly into methylformate. The initial step, the dehydrogenation of MeOH into formaldehyde, is significantly thermodynamically less favorable than the dehydrogenation of higher alcohols (RCH2OH, to their corresponding aldehydes see also reference [7
-
2OH), to their corresponding aldehydes (see also reference [7]).
-
-
-
-
28
-
-
58249106813
-
-
R. D. Gaussian 03, M. J. Frisch et al., see the Supporting Information.
-
R. D. Gaussian 03, M. J. Frisch et al., see the Supporting Information.
-
-
-
-
29
-
-
0035977261
-
-
R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 2001, 66, 7931.
-
(2001)
J. Org. Chem
, vol.66
, pp. 7931
-
-
Noyori, R.1
Yamakawa, M.2
Hashiguchi, S.3
-
30
-
-
58249124427
-
-
The mechanism of the reaction between the amino hydride e and hydrogen acceptor A is simply given by the counter-clockwise reading of the catalytic cycle, that is, e→d→c→b→a in Scheme 3.
-
The mechanism of the reaction between the amino hydride e and hydrogen acceptor A is simply given by the counter-clockwise reading of the catalytic cycle, that is, e→d→c→b→a in Scheme 3.
-
-
-
-
31
-
-
58249100009
-
-
3 (1 mol%) and is complete in 10 minutes at room temperature. Benzaldehyde (3 M) in MeOH was used. One equivalent of benzaldehyde served as the hydrogen acceptor.
-
3 (1 mol%) and is complete in 10 minutes at room temperature. Benzaldehyde (3 M) in MeOH was used. One equivalent of benzaldehyde served as the hydrogen acceptor.
-
-
-
|