메뉴 건너뛰기




Volumn 22, Issue 1, 2017, Pages 11-19

ROS Are Good

Author keywords

oxidative stress; redox biology; ROS; ROS network

Indexed keywords

REACTIVE OXYGEN METABOLITE;

EID: 84994402047     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.08.002     Document Type: Review
Times cited : (2352)

References (72)
  • 3
    • 84861706924 scopus 로고    scopus 로고
    • Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets
    • 3 Konig, J., et al. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr. Opin. Plant Biol. 15 (2012), 261–268.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 261-268
    • Konig, J.1
  • 4
    • 84964856870 scopus 로고    scopus 로고
    • Spreading the news: subcellular and organellar reactive oxygen species production and signalling
    • 4 Mignolet-Spruyt, L., et al. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67 (2016), 3831–3844.
    • (2016) J. Exp. Bot. , vol.67 , pp. 3831-3844
    • Mignolet-Spruyt, L.1
  • 5
    • 84965094607 scopus 로고    scopus 로고
    • Specificity in ROS signaling and transcript signatures
    • 5 Vaahtera, L., et al. Specificity in ROS signaling and transcript signatures. Antioxid. Redox Signal. 21 (2014), 1422–1441.
    • (2014) Antioxid. Redox Signal. , vol.21 , pp. 1422-1441
    • Vaahtera, L.1
  • 6
    • 79958042568 scopus 로고    scopus 로고
    • ROS signaling: the new wave?
    • 6 Mittler, R., et al. ROS signaling: the new wave?. Trends Plant Sci. 16 (2011), 300–309.
    • (2011) Trends Plant Sci. , vol.16 , pp. 300-309
    • Mittler, R.1
  • 7
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • 7 Wood, Z.A., et al. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300 (2003), 650–653.
    • (2003) Science , vol.300 , pp. 650-653
    • Wood, Z.A.1
  • 8
    • 57349112982 scopus 로고    scopus 로고
    • Elements and evolution
    • 8 Anbar, A.D., Elements and evolution. Science 322 (2008), 1481–1483.
    • (2008) Science , vol.322 , pp. 1481-1483
    • Anbar, A.D.1
  • 9
    • 84857919018 scopus 로고    scopus 로고
    • Superoxide dismutases: ancient enzymes and new insights
    • 9 Miller, A.F., Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586 (2012), 585–595.
    • (2012) FEBS Lett. , vol.586 , pp. 585-595
    • Miller, A.F.1
  • 10
    • 84926221482 scopus 로고    scopus 로고
    • Interplay between oxygen and Fe–S cluster biogenesis: insights from the Suf pathway
    • 10 Boyd, E.S., et al. Interplay between oxygen and Fe–S cluster biogenesis: insights from the Suf pathway. Biochemistry 53 (2014), 5834–5847.
    • (2014) Biochemistry , vol.53 , pp. 5834-5847
    • Boyd, E.S.1
  • 11
    • 4644304481 scopus 로고    scopus 로고
    • Reactive oxygen gene network of plants
    • 11 Mittler, R., et al. Reactive oxygen gene network of plants. Trends Plant Sci. 9 (2004), 490–498.
    • (2004) Trends Plant Sci. , vol.9 , pp. 490-498
    • Mittler, R.1
  • 12
    • 83055172937 scopus 로고    scopus 로고
    • Respiratory burst oxidases: the engines of ROS signaling
    • 12 Suzuki, N., et al. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14 (2011), 691–699.
    • (2011) Curr. Opin. Plant Biol. , vol.14 , pp. 691-699
    • Suzuki, N.1
  • 13
    • 44949106317 scopus 로고    scopus 로고
    • Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species
    • 13 Sumimoto, H., Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275 (2008), 3249–3277.
    • (2008) FEBS J. , vol.275 , pp. 3249-3277
    • Sumimoto, H.1
  • 14
    • 84956936048 scopus 로고    scopus 로고
    • Nox/Duox family of NADPH oxidases: lessons from knockout mouse models
    • 14 Sirokmany, G., et al. Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol. Sci. 37 (2016), 318–327.
    • (2016) Trends Pharmacol. Sci. , vol.37 , pp. 318-327
    • Sirokmany, G.1
  • 15
    • 84901008099 scopus 로고    scopus 로고
    • Nox NADPH oxidases and the endoplasmic reticulum
    • 15 Laurindo, F.R., et al. Nox NADPH oxidases and the endoplasmic reticulum. Antioxid. Redox Signal. 20 (2014), 2755–2775.
    • (2014) Antioxid. Redox Signal. , vol.20 , pp. 2755-2775
    • Laurindo, F.R.1
  • 16
    • 84894550453 scopus 로고    scopus 로고
    • Regulated necrosis: the expanding network of non-apoptotic cell death pathways
    • 16 Vanden Berghe, T., et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15 (2014), 135–147.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 135-147
    • Vanden Berghe, T.1
  • 17
    • 84957429081 scopus 로고    scopus 로고
    • Ferroptosis: process and function
    • 17 Xie, Y., et al. Ferroptosis: process and function. Cell Death Differ. 23 (2016), 369–379.
    • (2016) Cell Death Differ. , vol.23 , pp. 369-379
    • Xie, Y.1
  • 18
    • 84954484374 scopus 로고    scopus 로고
    • Regulated necrosis: disease relevance and therapeutic opportunities
    • 18 Conrad, M., et al. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15 (2016), 348–366.
    • (2016) Nat. Rev. Drug Discov. , vol.15 , pp. 348-366
    • Conrad, M.1
  • 19
    • 79952424488 scopus 로고    scopus 로고
    • Oxidative stress resistance in Deinococcus radiodurans
    • 19 Slade, D., Radman, M., Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75 (2011), 133–191.
    • (2011) Microbiol. Mol. Biol. Rev. , vol.75 , pp. 133-191
    • Slade, D.1    Radman, M.2
  • 20
    • 0031734418 scopus 로고    scopus 로고
    • Characterization of a peroxide-resistant mutant of the anaerobic bacterium Bacteroides fragilis
    • 20 Rocha, E.R., Smith, C.J., Characterization of a peroxide-resistant mutant of the anaerobic bacterium Bacteroides fragilis. J. Bacteriol. 180 (1998), 5906–5912.
    • (1998) J. Bacteriol. , vol.180 , pp. 5906-5912
    • Rocha, E.R.1    Smith, C.J.2
  • 21
    • 84859045122 scopus 로고    scopus 로고
    • Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations
    • 21 Yuan, M., et al. Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS ONE, 7, 2012, e34458.
    • (2012) PLoS ONE , vol.7 , pp. e34458
    • Yuan, M.1
  • 22
    • 84901052694 scopus 로고    scopus 로고
    • ROS function in redox signaling and oxidative stress
    • 22 Schieber, M., Chandel, N.S., ROS function in redox signaling and oxidative stress. Curr. Biol. 24 (2014), R453–R462.
    • (2014) Curr. Biol. , vol.24 , pp. R453-R462
    • Schieber, M.1    Chandel, N.S.2
  • 25
    • 84966589393 scopus 로고    scopus 로고
    • Mitochondrial ROS regulation of proliferating cells
    • In press
    • 25 Diebold, L., Chandel, N.S., Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med., 2016 In press.
    • (2016) Free Radic. Biol. Med.
    • Diebold, L.1    Chandel, N.S.2
  • 26
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • 26 Cairns, R.A., et al. Regulation of cancer cell metabolism. Nat. Rev. Cancer. 11 (2011), 85–95.
    • (2011) Nat. Rev. Cancer. , vol.11 , pp. 85-95
    • Cairns, R.A.1
  • 27
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • 27 Weinberg, F., et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 8788–8793.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 28
    • 84889575198 scopus 로고    scopus 로고
    • Modulation of oxidative stress as an anticancer strategy
    • 28 Gorrini, C., et al. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12 (2013), 931–947.
    • (2013) Nat. Rev. Drug Discov. , vol.12 , pp. 931-947
    • Gorrini, C.1
  • 29
    • 84920971375 scopus 로고    scopus 로고
    • Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy
    • 29 Poillet-Perez, L., et al. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 4 (2015), 184–192.
    • (2015) Redox Biol. , vol.4 , pp. 184-192
    • Poillet-Perez, L.1
  • 30
    • 79957597757 scopus 로고    scopus 로고
    • Mitochondria in innate immune responses
    • 30 West, A.P., et al. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11 (2011), 389–402.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 389-402
    • West, A.P.1
  • 31
    • 84894073629 scopus 로고    scopus 로고
    • Reactive oxygen species in inflammation and tissue injury
    • 31 Mittal, M., et al. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 20.7, 2014, 1126–1167.
    • (2014) Antioxid. Redox Signal 20.7 , pp. 1126-1167
    • Mittal, M.1
  • 32
    • 79955532516 scopus 로고    scopus 로고
    • TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
    • 32 West, A.P., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472 (2011), 476–480.
    • (2011) Nature , vol.472 , pp. 476-480
    • West, A.P.1
  • 33
    • 0033667705 scopus 로고    scopus 로고
    • Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production
    • 33 Arsenijevic, D., et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26 (2000), 435–439.
    • (2000) Nat. Genet. , vol.26 , pp. 435-439
    • Arsenijevic, D.1
  • 34
    • 76249101651 scopus 로고    scopus 로고
    • +/− mouse mutants
    • +/− mouse mutants. J. Immunol. 184 (2010), 582–590.
    • (2010) J. Immunol. , vol.184 , pp. 582-590
    • Wang, D.1
  • 35
    • 84878846051 scopus 로고    scopus 로고
    • ROS are required for mouse spermatogonial stem cell self-renewal
    • 35 Morimoto, H., et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell. Stem Cell. 12 (2013), 774–786.
    • (2013) Cell. Stem Cell. , vol.12 , pp. 774-786
    • Morimoto, H.1
  • 36
    • 84871927066 scopus 로고    scopus 로고
    • Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia
    • 36 D'Souza, A.D., et al. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol. Ther. 21 (2013), 42–48.
    • (2013) Mol. Ther. , vol.21 , pp. 42-48
    • D'Souza, A.D.1
  • 37
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • 37 Juntilla, M.M., et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115 (2010), 4030–4038.
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1
  • 38
    • 84860528235 scopus 로고    scopus 로고
    • The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells
    • 38 Maryanovich, M., et al. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat. Cell Biol. 14 (2012), 535–541.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 535-541
    • Maryanovich, M.1
  • 39
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • 39 Owusu-Ansah, E., Banerjee, U., Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461 (2009), 537–541.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 40
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • 40 Tormos, K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell. Metab. 14 (2011), 537–544.
    • (2011) Cell. Metab. , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 41
    • 84938412749 scopus 로고    scopus 로고
    • Controlling redox status for stem cell survival, expansion, and differentiation
    • 41 Sart, S., et al. Controlling redox status for stem cell survival, expansion, and differentiation. Oxid Med. Cell. Longev, 2015, 2015, 105135.
    • (2015) Oxid Med. Cell. Longev , vol.2015 , pp. 105135
    • Sart, S.1
  • 42
    • 84876854791 scopus 로고    scopus 로고
    • Iron and cancer: more ore to be mined
    • 42 Torti, S.V., Torti, F.M., Iron and cancer: more ore to be mined. Nat. Rev. Cancer. 13 (2013), 342–355.
    • (2013) Nat. Rev. Cancer. , vol.13 , pp. 342-355
    • Torti, S.V.1    Torti, F.M.2
  • 43
    • 77954249308 scopus 로고    scopus 로고
    • Two to tango: regulation of mammalian iron metabolism
    • 43 Hentze, M.W., et al. Two to tango: regulation of mammalian iron metabolism. Cell 142 (2010), 24–38.
    • (2010) Cell , vol.142 , pp. 24-38
    • Hentze, M.W.1
  • 44
    • 84883402935 scopus 로고    scopus 로고
    • NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth
    • 44 Sohn, Y.S., et al. NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 14676–14681.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 14676-14681
    • Sohn, Y.S.1
  • 45
    • 84940703918 scopus 로고    scopus 로고
    • Cysteines under ROS attack in plants: a proteomics view
    • 45 Akter, S., et al. Cysteines under ROS attack in plants: a proteomics view. J. Exp. Bot. 66 (2015), 2935–2944.
    • (2015) J. Exp. Bot. , vol.66 , pp. 2935-2944
    • Akter, S.1
  • 46
    • 84966431830 scopus 로고    scopus 로고
    • Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?
    • 46 Dietz, K.J., Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast?. Mol. Cells 39 (2016), 20–25.
    • (2016) Mol. Cells , vol.39 , pp. 20-25
    • Dietz, K.J.1
  • 47
    • 84949895774 scopus 로고    scopus 로고
    • Nuclear thiol redox systems in plants
    • 47 Delorme-Hinoux, V., et al. Nuclear thiol redox systems in plants. Plant Sci. 243 (2016), 84–95.
    • (2016) Plant Sci. , vol.243 , pp. 84-95
    • Delorme-Hinoux, V.1
  • 48
    • 84923067392 scopus 로고    scopus 로고
    • Glutathione peroxidases as redox sensor proteins in plant cells
    • 48 Passaia, G., Margis-Pinheiro, M., Glutathione peroxidases as redox sensor proteins in plant cells. Plant Sci. 234 (2015), 22–26.
    • (2015) Plant Sci. , vol.234 , pp. 22-26
    • Passaia, G.1    Margis-Pinheiro, M.2
  • 49
    • 84940703366 scopus 로고    scopus 로고
    • Oxidative post-translational modifications of cysteine residues in plant signal transduction
    • 49 Waszczak, C., et al. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66 (2015), 2923–2934.
    • (2015) J. Exp. Bot. , vol.66 , pp. 2923-2934
    • Waszczak, C.1
  • 50
    • 3242715114 scopus 로고    scopus 로고
    • Reactive oxygen species: metabolism, oxidative stress, and signal transduction
    • 50 Apel, K., Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55 (2004), 373–399.
    • (2004) Annu. Rev. Plant. Biol. , vol.55 , pp. 373-399
    • Apel, K.1    Hirt, H.2
  • 51
    • 79952182060 scopus 로고    scopus 로고
    • Extranuclear protection of chromosomal DNA from oxidative stress
    • 51 Vanderauwera, S., et al. Extranuclear protection of chromosomal DNA from oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 1711–1716.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1711-1716
    • Vanderauwera, S.1
  • 52
    • 84935872830 scopus 로고    scopus 로고
    • Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging
    • 52 Hossain, M.A., et al. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant. Sci., 6, 2015, 420.
    • (2015) Front. Plant. Sci. , vol.6 , pp. 420
    • Hossain, M.A.1
  • 53
    • 84982067582 scopus 로고    scopus 로고
    • ROS generation in peroxisomes and its role in cell signaling
    • Published online April 14, 2016
    • 53 Del Rio, L.A., Lopez-Huertas, E., ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol., 2016, 10.1093/pcp/pcw076 Published online April 14, 2016.
    • (2016) Plant Cell Physiol.
    • Del Rio, L.A.1    Lopez-Huertas, E.2
  • 54
    • 84960108177 scopus 로고    scopus 로고
    • Global plant stress signaling: reactive oxygen species at the cross-road
    • 54 Sewelam, N., et al. Global plant stress signaling: reactive oxygen species at the cross-road. Front. Plant. Sci., 7, 2016, 187.
    • (2016) Front. Plant. Sci. , vol.7 , pp. 187
    • Sewelam, N.1
  • 55
    • 84940894660 scopus 로고    scopus 로고
    • Tuning plant signaling and growth to survive salt
    • 55 Julkowska, M.M., Testerink, C., Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20 (2015), 586–594.
    • (2015) Trends Plant Sci. , vol.20 , pp. 586-594
    • Julkowska, M.M.1    Testerink, C.2
  • 56
    • 84938427235 scopus 로고    scopus 로고
    • Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance
    • 56 Xia, X.J., et al. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66 (2015), 2839–2856.
    • (2015) J. Exp. Bot. , vol.66 , pp. 2839-2856
    • Xia, X.J.1
  • 57
    • 84923247270 scopus 로고    scopus 로고
    • Key players of singlet oxygen-induced cell death in plants
    • 57 Laloi, C., Havaux, M., Key players of singlet oxygen-induced cell death in plants. Front. Plant. Sci., 6, 2015, 39.
    • (2015) Front. Plant. Sci. , vol.6 , pp. 39
    • Laloi, C.1    Havaux, M.2
  • 58
    • 84937771124 scopus 로고    scopus 로고
    • ROS-mediated redox signaling during cell differentiation in plants
    • 58 Schmidt, R., Schippers, J.H., ROS-mediated redox signaling during cell differentiation in plants. Biochim. Biophys. Acta 1850 (2015), 1497–1508.
    • (2015) Biochim. Biophys. Acta , vol.1850 , pp. 1497-1508
    • Schmidt, R.1    Schippers, J.H.2
  • 59
    • 84902476644 scopus 로고    scopus 로고
    • Free radical-mediated systemic immunity in plants
    • 59 Wendehenne, D., et al. Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20 (2014), 127–134.
    • (2014) Curr. Opin. Plant Biol. , vol.20 , pp. 127-134
    • Wendehenne, D.1
  • 60
    • 84898717688 scopus 로고    scopus 로고
    • The roles of reactive oxygen metabolism in drought: not so cut and dried
    • 60 Noctor, G., et al. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 164 (2014), 1636–1648.
    • (2014) Plant Physiol. , vol.164 , pp. 1636-1648
    • Noctor, G.1
  • 61
    • 84900867948 scopus 로고    scopus 로고
    • Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives
    • 61 Traverso, J.A., et al. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives. Front. Plant. Sci., 4, 2013, 465.
    • (2013) Front. Plant. Sci. , vol.4 , pp. 465
    • Traverso, J.A.1
  • 63
    • 84895067013 scopus 로고    scopus 로고
    • Behind the scenes: the roles of reactive oxygen species in guard cells
    • 63 Song, Y., et al. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol. 201 (2014), 1121–1140.
    • (2014) New Phytol. , vol.201 , pp. 1121-1140
    • Song, Y.1
  • 64
    • 84881612502 scopus 로고    scopus 로고
    • Nitric oxide and reactive oxygen species in plant biotic interactions
    • 64 Scheler, C., et al. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16 (2013), 534–539.
    • (2013) Curr. Opin. Plant Biol. , vol.16 , pp. 534-539
    • Scheler, C.1
  • 65
    • 84908152976 scopus 로고    scopus 로고
    • A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling
    • 65 Gilroy, S., et al. A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci. 19 (2014), 623–630.
    • (2014) Trends Plant Sci. , vol.19 , pp. 623-630
    • Gilroy, S.1
  • 66
    • 84977536735 scopus 로고    scopus 로고
    • ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants
    • 66 Gilroy, S., et al. ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171 (2016), 1606–1615.
    • (2016) Plant Physiol. , vol.171 , pp. 1606-1615
    • Gilroy, S.1
  • 67
    • 84897112203 scopus 로고    scopus 로고
    • Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide
    • 67 Bienert, G.P., Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim. Biophys. Acta 1840 (2014), 1596–1604.
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 1596-1604
    • Bienert, G.P.1    Chaumont, F.2
  • 68
    • 80053124673 scopus 로고    scopus 로고
    • Taking a ‘good’ look at free radicals in the aging process
    • 68 Hekimi, S., et al. Taking a ‘good’ look at free radicals in the aging process. Trends Cell Biol. 21 (2011), 569–576.
    • (2011) Trends Cell Biol. , vol.21 , pp. 569-576
    • Hekimi, S.1
  • 69
    • 79959350253 scopus 로고    scopus 로고
    • Extending life span by increasing oxidative stress
    • 69 Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51 (2011), 327–336.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 327-336
    • Ristow, M.1    Schmeisser, S.2
  • 70
    • 84930930156 scopus 로고    scopus 로고
    • Biological and physiological role of reactive oxygen species–the good, the bad and the ugly
    • 70 Zuo, L., et al. Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta Physiol. (Oxf) 214 (2015), 329–348.
    • (2015) Acta Physiol. (Oxf) , vol.214 , pp. 329-348
    • Zuo, L.1
  • 71
    • 1642545527 scopus 로고    scopus 로고
    • U-rich Archaean sea-floor sediments from Greenland–indications of > 3700 Ma oxygenic photosynthesis
    • 71 Rosing, M.T., Frei, R., U-rich Archaean sea-floor sediments from Greenland–indications of > 3700 Ma oxygenic photosynthesis. Earth Planetary Sci. Lett. 217 (2004), 237–244.
    • (2004) Earth Planetary Sci. Lett. , vol.217 , pp. 237-244
    • Rosing, M.T.1    Frei, R.2
  • 72
    • 77957729177 scopus 로고    scopus 로고
    • Early evolution of photosynthesis
    • 72 Blankenship, R.E., Early evolution of photosynthesis. Plant Physiol. 154 (2010), 434–438.
    • (2010) Plant Physiol. , vol.154 , pp. 434-438
    • Blankenship, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.