메뉴 건너뛰기




Volumn 22, Issue 6, 2016, Pages 593-603

Doping the Mind: Dopaminergic Modulation of Prefrontal Cortical Cognition

Author keywords

cognitive control; dopamine; neuromodulation; nonhuman primate; prefrontal cortex

Indexed keywords

DOPAMINE;

EID: 84994275853     PISSN: 10738584     EISSN: 10894098     Source Type: Journal    
DOI: 10.1177/1073858415602850     Document Type: Review
Times cited : (33)

References (87)
  • 1
  • 3
    • 0026554483 scopus 로고
    • Working memory
    • Baddeley A., 1992. Working memory. Science 255: 556-9.
    • (1992) Science , vol.255 , pp. 556-559
    • Baddeley, A.1
  • 5
    • 79953160857 scopus 로고    scopus 로고
    • Mechanisms of top-down attention
    • Baluch F, Itti L., 2011. Mechanisms of top-down attention. Trends Neurosci 34: 210-24.
    • (2011) Trends Neurosci , vol.34 , pp. 210-224
    • Baluch, F.1    Itti, L.2
  • 6
    • 0023779537 scopus 로고
    • Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey
    • Barbas H,. 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276: 313-42.
    • (1988) J Comp Neurol , vol.276 , pp. 313-342
    • Barbas, H.1
  • 7
    • 0022416963 scopus 로고
    • Cortical afferent input to the principalis region of the rhesus monkey
    • Barbas H, Mesulam MM,. 1985. Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience 15: 619-37.
    • (1985) Neuroscience , vol.15 , pp. 619-637
    • Barbas, H.1    Mesulam, M.M.2
  • 8
    • 0027373552 scopus 로고
    • Prefrontal connections of medial motor areas in the rhesus monkey
    • Bates JF, Goldman-Rakic PS,. 1993. Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336: 211-28.
    • (1993) J Comp Neurol , vol.336 , pp. 211-228
    • Bates, J.F.1    Goldman-Rakic, P.S.2
  • 9
    • 79958079437 scopus 로고    scopus 로고
    • Psychostimulants as cognitive enhancers: The prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder
    • Berridge CW, Devilbiss DM,. 2011. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol Psychiatry 69: e101-11.
    • (2011) Biol Psychiatry , vol.69 , pp. e101-e111
    • Berridge, C.W.1    Devilbiss, D.M.2
  • 10
    • 76649120573 scopus 로고    scopus 로고
    • Basic mathematical rules are encoded by primate prefrontal cortex neurons
    • Bongard S, Nieder A., 2010. Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc Natl Acad Sci U S A 107: 2277-82.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 2277-2282
    • Bongard, S.1    Nieder, A.2
  • 11
    • 0018725135 scopus 로고
    • Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey
    • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS,. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929-32.
    • (1979) Science , vol.205 , pp. 929-932
    • Brozoski, T.J.1    Brown, R.M.2    Rosvold, H.E.3    Goldman, P.S.4
  • 12
    • 0034657698 scopus 로고    scopus 로고
    • Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons
    • Carr DB, Sesack SR,. 2000. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864-73.
    • (2000) J Neurosci , vol.20 , pp. 3864-3873
    • Carr, D.B.1    Sesack, S.R.2
  • 13
    • 84864958975 scopus 로고    scopus 로고
    • Biochemical and genetic analyses of childhood attention deficit/hyperactivity disorder
    • Caylak E,. 2012. Biochemical and genetic analyses of childhood attention deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 159B: 613-27.
    • (2012) Am J Med Genet B Neuropsychiatr Genet , vol.159 , pp. 613-627
    • Caylak, E.1
  • 14
    • 84872925363 scopus 로고    scopus 로고
    • Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons
    • others
    • Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, and others. 2013. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493: 532-6.
    • (2013) Nature , vol.493 , pp. 532-536
    • Chaudhury, D.1    Walsh, J.J.2    Friedman, A.K.3    Juarez, B.4    Ku, S.M.5    Koo, J.W.6
  • 15
    • 0037179121 scopus 로고    scopus 로고
    • Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J. Comp
    • Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH,. 2002. Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J. Comp. Neurol. 450: 203-214.
    • (2002) Neurol , vol.450 , pp. 203-214
    • Chu, Y.1    Kompoliti, K.2    Cochran, E.J.3    Mufson, E.J.4    Kordower, J.H.5
  • 16
    • 84901853724 scopus 로고    scopus 로고
    • Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models
    • others
    • Chun S, Westmoreland JJ, Bayazitov IT, Eddins D, Pani AK, Smeyne RJ, and others. 2014. Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science 344: 1178-82.
    • (2014) Science , vol.344 , pp. 1178-1182
    • Chun, S.1    Westmoreland, J.J.2    Bayazitov, I.T.3    Eddins, D.4    Pani, A.K.5    Smeyne, R.J.6
  • 17
    • 74249113632 scopus 로고    scopus 로고
    • Enhanced frontal function in Parkinson's disease
    • Cools R, Miyakawa A, Sheridan M, D'Esposito M., 2010. Enhanced frontal function in Parkinson's disease. Brain 133: 225-33.
    • (2010) Brain , vol.133 , pp. 225-233
    • Cools, R.1    Miyakawa, A.2    Sheridan, M.3    D'Esposito, M.4
  • 18
    • 0029554063 scopus 로고
    • Anatomic and behavioral aspects of frontal-subcortical circuits
    • Cummings JL,. 1995. Anatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci 769: 1-13.
    • (1995) Ann N y Acad Sci , vol.769 , pp. 1-13
    • Cummings, J.L.1
  • 20
    • 72049113845 scopus 로고    scopus 로고
    • Executive function, neural circuitry, and genetic mechanisms in schizophrenia
    • Eisenberg DP, Berman KF,. 2010. Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacology 35: 258-77.
    • (2010) Neuropsychopharmacology , vol.35 , pp. 258-277
    • Eisenberg, D.P.1    Berman, K.F.2
  • 21
    • 0032538911 scopus 로고    scopus 로고
    • Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys
    • others
    • Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, and others. 1998. Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401: 253-65.
    • (1998) J Comp Neurol , vol.401 , pp. 253-265
    • Emborg, M.E.1    Ma, S.Y.2    Mufson, E.J.3    Levey, A.I.4    Taylor, M.D.5    Brown, W.D.6
  • 22
    • 57749177083 scopus 로고    scopus 로고
    • Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia
    • Fletcher PC, Frith CD,. 2009. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 10: 48-58.
    • (2009) Nat Rev Neurosci , vol.10 , pp. 48-58
    • Fletcher, P.C.1    Frith, C.D.2
  • 23
    • 30944469609 scopus 로고    scopus 로고
    • Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting
    • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MTL,. 2006. Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31: 297-309.
    • (2006) Neuropsychopharmacology , vol.31 , pp. 297-309
    • Floresco, S.B.1    Magyar, O.2    Ghods-Sharifi, S.3    Vexelman, C.4    Tse, M.T.L.5
  • 24
    • 0015222118 scopus 로고
    • Neuron activity related to short-term memory
    • Fuster JM, Alexander GE,. 1971. Neuron activity related to short-term memory. Science 173: 652-4.
    • (1971) Science , vol.173 , pp. 652-654
    • Fuster, J.M.1    Alexander, G.E.2
  • 25
    • 0027266814 scopus 로고
    • Midbrain dopaminergic neurons (nuclei A8, A9, and A10): Three-dimensional reconstruction in the rat
    • German DC, Manaye KF,. 1993. Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331: 297-309.
    • (1993) J Comp Neurol , vol.331 , pp. 297-309
    • German, D.C.1    Manaye, K.F.2
  • 28
    • 65349120160 scopus 로고    scopus 로고
    • The dopamine hypothesis of schizophrenia: Version III - The final common pathway
    • Howes OD, Kapur S., 2009. The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull 35: 549-62.
    • (2009) Schizophr Bull , vol.35 , pp. 549-562
    • Howes, O.D.1    Kapur, S.2
  • 29
    • 84903584679 scopus 로고    scopus 로고
    • Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli
    • Jacob SN, Nieder A., 2014. Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron 83: 226-37.
    • (2014) Neuron , vol.83 , pp. 226-237
    • Jacob, S.N.1    Nieder, A.2
  • 30
    • 84882615389 scopus 로고    scopus 로고
    • Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals
    • Jacob SN, Ott T, Nieder A., 2013. Dopamine regulates two classes of primate prefrontal neurons that represent sensory signals. J Neurosci 33: 13724-34.
    • (2013) J Neurosci , vol.33 , pp. 13724-13734
    • Jacob, S.N.1    Ott, T.2    Nieder, A.3
  • 31
    • 0037223711 scopus 로고    scopus 로고
    • Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia
    • Kapur S,. 2003. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160: 13-23.
    • (2003) Am J Psychiatry , vol.160 , pp. 13-23
    • Kapur, S.1
  • 32
    • 84929881828 scopus 로고    scopus 로고
    • Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine
    • others
    • Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, and others. 2015. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18: 883-91.
    • (2015) Nat Neurosci , vol.18 , pp. 883-891
    • Kim, I.H.1    Rossi, M.A.2    Aryal, D.K.3    Racz, B.4    Kim, N.5    Uezu, A.6
  • 33
    • 0015060162 scopus 로고
    • Prefrontal cortical unit activity and delayed alternation performance in monkeys
    • Kubota K, Niki H., 1971. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34: 337-47.
    • (1971) J Neurophysiol , vol.34 , pp. 337-347
    • Kubota, K.1    Niki, H.2
  • 34
    • 0030821590 scopus 로고    scopus 로고
    • Molecular characteristics of mammalian dopamine receptors
    • Lachowicz JE, Sibley DR,. 1997. Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 81: 105-13.
    • (1997) Pharmacol Toxicol , vol.81 , pp. 105-113
    • Lachowicz, J.E.1    Sibley, D.R.2
  • 35
    • 84921412580 scopus 로고    scopus 로고
    • Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons
    • others
    • Lammel S, Steinberg EE, Földy C, Wall NR, Beier K, Luo L, and others. 2015. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85: 429-38.
    • (2015) Neuron , vol.85 , pp. 429-438
    • Lammel, S.1    Steinberg, E.E.2    Földy, C.3    Wall, N.R.4    Beier, K.5    Luo, L.6
  • 36
    • 0025851935 scopus 로고
    • Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390
    • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P., 1991. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40: 657-71.
    • (1991) Neuroscience , vol.40 , pp. 657-671
    • Lidow, M.S.1    Goldman-Rakic, P.S.2    Gallager, D.W.3    Rakic, P.4
  • 37
    • 0842265741 scopus 로고    scopus 로고
    • Layer v neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex
    • Lidow MS, Wang F, Cao Y, Goldman-Rakic PS,. 1998. Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex. Synapse 28: 10-20.
    • (1998) Synapse , vol.28 , pp. 10-20
    • Lidow, M.S.1    Wang, F.2    Cao, Y.3    Goldman-Rakic, P.S.4
  • 38
    • 84867116171 scopus 로고    scopus 로고
    • Neuromodulation of neuronal circuits: Back to the future
    • Marder E,. 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76: 1-11.
    • (2012) Neuron , vol.76 , pp. 1-11
    • Marder, E.1
  • 39
    • 67349098495 scopus 로고    scopus 로고
    • Two types of dopamine neuron distinctly convey positive and negative motivational signals
    • Matsumoto M, Hikosaka O., 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459: 837-41.
    • (2009) Nature , vol.459 , pp. 837-841
    • Matsumoto, M.1    Hikosaka, O.2
  • 40
    • 84884190234 scopus 로고    scopus 로고
    • Distinct representations of cognitive and motivational signals in midbrain dopamine neurons
    • Matsumoto M, Takada M., 2013. Distinct representations of cognitive and motivational signals in midbrain dopamine neurons. Neuron 79: 1011-24.
    • (2013) Neuron , vol.79 , pp. 1011-1024
    • Matsumoto, M.1    Takada, M.2
  • 43
    • 0034928713 scopus 로고    scopus 로고
    • An integrative theory of prefrontal cortex function
    • Miller EK, Cohen JD,. 2001. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167-202.
    • (2001) Annu Rev Neurosci , vol.24 , pp. 167-202
    • Miller, E.K.1    Cohen, J.D.2
  • 44
    • 84887059933 scopus 로고
    • Effects of different brain lesions on card sorting
    • Milner B,. 1963. Effects of different brain lesions on card sorting. Arch Neurol 9: 90-100.
    • (1963) Arch Neurol , vol.9 , pp. 90-100
    • Milner, B.1
  • 46
    • 0034652088 scopus 로고    scopus 로고
    • Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction
    • Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T., 2000. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20: 1568-74.
    • (2000) J Neurosci , vol.20 , pp. 1568-1574
    • Mizoguchi, K.1    Yuzurihara, M.2    Ishige, A.3    Sasaki, H.4    Chui, D.H.5    Tabira, T.6
  • 47
    • 0037461709 scopus 로고    scopus 로고
    • Selective gating of visual signals by microstimulation of frontal cortex
    • Moore T, Armstrong KM,. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421: 370-3.
    • (2003) Nature , vol.421 , pp. 370-373
    • Moore, T.1    Armstrong, K.M.2
  • 48
    • 2942648152 scopus 로고    scopus 로고
    • Schizophrenia
    • Mueser KT, McGurk SR,. 2004. Schizophrenia. Lancet 363: 2063-72.
    • (2004) Lancet , vol.363 , pp. 2063-2072
    • Mueser, K.T.1    McGurk, S.R.2
  • 49
    • 0029942834 scopus 로고    scopus 로고
    • Midbrain dopaminergic neurons in the mouse: Computer-assisted mapping
    • Nelson EL, Liang CL, Sinton CM, German DC,. 1996. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol 369: 361-71.
    • (1996) J Comp Neurol , vol.369 , pp. 361-371
    • Nelson, E.L.1    Liang, C.L.2    Sinton, C.M.3    German, D.C.4
  • 50
    • 79959271172 scopus 로고    scopus 로고
    • Control of visual cortical signals by prefrontal dopamine
    • Noudoost B, Moore T., 2011. Control of visual cortical signals by prefrontal dopamine. Nature 474: 372-5.
    • (2011) Nature , vol.474 , pp. 372-375
    • Noudoost, B.1    Moore, T.2
  • 52
    • 0031037346 scopus 로고    scopus 로고
    • Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET
    • others
    • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, and others. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385: 634-6.
    • (1997) Nature , vol.385 , pp. 634-636
    • Okubo, Y.1    Suhara, T.2    Suzuki, K.3    Kobayashi, K.4    Inoue, O.5    Terasaki, O.6
  • 53
    • 84926337567 scopus 로고    scopus 로고
    • Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons
    • Ott T, Jacob SN, Nieder A., 2014. Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons. Neuron 84: 1317-28.
    • (2014) Neuron , vol.84 , pp. 1317-1328
    • Ott, T.1    Jacob, S.N.2    Nieder, A.3
  • 55
    • 0019993773 scopus 로고
    • Motor conditional associative-learning after selective prefrontal lesions in the monkey
    • Petrides M., 1982. Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav Brain Res 5: 407-13.
    • (1982) Behav Brain Res , vol.5 , pp. 407-413
    • Petrides, M.1
  • 56
    • 0028907956 scopus 로고
    • Do rats have prefrontal cortex? the Rose-Woolsey-Akert program reconsidered
    • Preuss TM., 1995. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cogn Neurosci 7: 1-24.
    • (1995) J Cogn Neurosci , vol.7 , pp. 1-24
    • Preuss, T.M.1
  • 57
    • 84983247371 scopus 로고    scopus 로고
    • Neural substrates of dopamine D2 receptor modulated executive functions in the monkey prefrontal cortex
    • Puig MV, Miller EK,. 2015. Neural substrates of dopamine D2 receptor modulated executive functions in the monkey prefrontal cortex. Cereb Cortex 25: 2980-87.
    • (2015) Cereb Cortex , vol.25 , pp. 2980-2987
    • Puig, M.V.1    Miller, E.K.2
  • 58
    • 84861944980 scopus 로고    scopus 로고
    • The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning
    • Puig MV, Miller EK,. 2012. The role of prefrontal dopamine D1 receptors in the neural mechanisms of associative learning. Neuron 74: 874-86.
    • (2012) Neuron , vol.74 , pp. 874-886
    • Puig, M.V.1    Miller, E.K.2
  • 59
    • 0036204421 scopus 로고    scopus 로고
    • The effects of dopamine D(1) receptor blockade in the prelimbic-infralimbic areas on behavioral flexibility
    • Ragozzino ME,. 2002. The effects of dopamine D(1) receptor blockade in the prelimbic-infralimbic areas on behavioral flexibility. Learn Mem 9: 18-28.
    • (2002) Learn Mem , vol.9 , pp. 18-28
    • Ragozzino, M.E.1
  • 61
    • 0028255978 scopus 로고
    • 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: Possible interactions with subcortical dopamine
    • others
    • Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, and others. 1994. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14: 2531-44.
    • (1994) J Neurosci , vol.14 , pp. 2531-2544
    • Roberts, A.C.1    De Salvia, M.A.2    Wilkinson, L.S.3    Collins, P.4    Muir, J.L.5    Everitt, B.J.6
  • 62
    • 49949101019 scopus 로고    scopus 로고
    • Computational models of schizophrenia and dopamine modulation in the prefrontal cortex
    • Rolls ET, Loh M, Deco G, Winterer G., 2008. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9: 696-709.
    • (2008) Nat Rev Neurosci , vol.9 , pp. 696-709
    • Rolls, E.T.1    Loh, M.2    Deco, G.3    Winterer, G.4
  • 63
    • 84883182497 scopus 로고    scopus 로고
    • The brain reward circuitry in mood disorders
    • Russo SJ, Nestler EJ,. 2013. The brain reward circuitry in mood disorders. Nat Rev Neurosci 14: 609-25.
    • (2013) Nat Rev Neurosci , vol.14 , pp. 609-625
    • Russo, S.J.1    Nestler, E.J.2
  • 64
    • 67349134693 scopus 로고    scopus 로고
    • Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex
    • Santana N, Mengod G, Artigas F., 2009. Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 19: 849-60.
    • (2009) Cereb Cortex , vol.19 , pp. 849-860
    • Santana, N.1    Mengod, G.2    Artigas, F.3
  • 66
    • 0025890053 scopus 로고
    • D1 dopamine receptors in prefrontal cortex: Involvement in working memory
    • Sawaguchi T, Goldman-Rakic PS,. 1991. D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251: 947-50.
    • (1991) Science , vol.251 , pp. 947-950
    • Sawaguchi, T.1    Goldman-Rakic, P.S.2
  • 67
    • 34547659151 scopus 로고    scopus 로고
    • Multiple dopamine functions at different time courses
    • Schultz W,. 2007. Multiple dopamine functions at different time courses. Annu Rev Neurosci 30: 259-88.
    • (2007) Annu Rev Neurosci , vol.30 , pp. 259-288
    • Schultz, W.1
  • 68
    • 0027468102 scopus 로고
    • Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task
    • Schultz W, Apicella P, Ljungberg T., 1993. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13: 900-13.
    • (1993) J Neurosci , vol.13 , pp. 900-913
    • Schultz, W.1    Apicella, P.2    Ljungberg, T.3
  • 69
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W, Dayan P, Montague PR,. 1997. A neural substrate of prediction and reward. Science 275: 1593-9.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 70
    • 79952642829 scopus 로고    scopus 로고
    • All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors
    • Seeman P,. 2011. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther 17: 118-32.
    • (2011) CNS Neurosci Ther , vol.17 , pp. 118-132
    • Seeman, P.1
  • 71
    • 0016592484 scopus 로고
    • Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons
    • Seeman P, Lee T., 1975. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188: 1217-9.
    • (1975) Science , vol.188 , pp. 1217-1219
    • Seeman, P.1    Lee, T.2
  • 72
    • 20444414098 scopus 로고    scopus 로고
    • Structural brain imaging of attention-deficit/hyperactivity disorder
    • Seidman LJ, Valera EM, Makris N., 2005. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry 57: 1263-72.
    • (2005) Biol Psychiatry , vol.57 , pp. 1263-1272
    • Seidman, L.J.1    Valera, E.M.2    Makris, N.3
  • 73
    • 58849129458 scopus 로고    scopus 로고
    • Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity
    • others
    • Sidiropoulou K, Lu FM, Fowler MA, Xiao R, Phillips C, Ozkan ED, and others. 2009. Dopamine modulates an mGluR5-mediated depolarization underlying prefrontal persistent activity. Nat Neurosci 12: 190-9.
    • (2009) Nat Neurosci , vol.12 , pp. 190-199
    • Sidiropoulou, K.1    Lu, F.M.2    Fowler, M.A.3    Xiao, R.4    Phillips, C.5    Ozkan, E.D.6
  • 74
    • 0028177440 scopus 로고
    • D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: Predominant and extrasynaptic localization in dendritic spines
    • Smiley JF, Levey AI, Ciliax BJ, Goldman-Rakic PS,. 1994. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc Natl Acad Sci U S A 91: 5720-4.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 5720-5724
    • Smiley, J.F.1    Levey, A.I.2    Ciliax, B.J.3    Goldman-Rakic, P.S.4
  • 75
    • 84857287669 scopus 로고    scopus 로고
    • Separate prefrontal-subcortical circuits mediate different components of risk-based decision making
    • St Onge JR, Stopper CM, Zahm DS, Floresco SB,. 2012. Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J Neurosci 32: 2886-99.
    • (2012) J Neurosci , vol.32 , pp. 2886-2899
    • St Onge, J.R.1    Stopper, C.M.2    Zahm, D.S.3    Floresco, S.B.4
  • 76
    • 84872937372 scopus 로고    scopus 로고
    • Dopamine neurons modulate neural encoding and expression of depression-related behaviour
    • others
    • Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, and others. 2013. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493: 537-41.
    • (2013) Nature , vol.493 , pp. 537-541
    • Tye, K.M.1    Mirzabekov, J.J.2    Warden, M.R.3    Ferenczi, E.A.4    Tsai, H.C.5    Finkelstein, J.6
  • 77
    • 0242580988 scopus 로고    scopus 로고
    • Differential projections of the infralimbic and prelimbic cortex in the rat
    • Vertes RP,. 2003. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32-58.
    • (2003) Synapse , vol.51 , pp. 32-58
    • Vertes, R.P.1
  • 78
  • 79
    • 0035927798 scopus 로고    scopus 로고
    • Single neurons in prefrontal cortex encode abstract rules
    • Wallis JD, Anderson KC, Miller EK,. 2001. Single neurons in prefrontal cortex encode abstract rules. Nature 411: 953-6.
    • (2001) Nature , vol.411 , pp. 953-956
    • Wallis, J.D.1    Anderson, K.C.2    Miller, E.K.3
  • 80
    • 34147105096 scopus 로고    scopus 로고
    • Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex
    • others
    • Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, and others. 2007. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129: 397-410.
    • (2007) Cell , vol.129 , pp. 397-410
    • Wang, M.1    Ramos, B.P.2    Paspalas, C.D.3    Shu, Y.4    Simen, A.5    Duque, A.6
  • 81
    • 0842309863 scopus 로고    scopus 로고
    • Selective D2 receptor actions on the functional circuitry of working memory
    • Wang M, Vijayraghavan S, Goldman-Rakic PS,. 2004. Selective D2 receptor actions on the functional circuitry of working memory. Science 303: 853-6.
    • (2004) Science , vol.303 , pp. 853-856
    • Wang, M.1    Vijayraghavan, S.2    Goldman-Rakic, P.S.3
  • 82
    • 84874286656 scopus 로고    scopus 로고
    • NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex
    • others
    • Wang M, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, and others. 2013. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron 77: 736-49.
    • (2013) Neuron , vol.77 , pp. 736-749
    • Wang, M.1    Yang, Y.2    Wang, C.J.3    Gamo, N.J.4    Jin, L.E.5    Mazer, J.A.6
  • 83
    • 0030667353 scopus 로고    scopus 로고
    • Increase of extracellular dopamine in primate prefrontal cortex during a working memory task
    • Watanabe M, Kodama T, Hikosaka K., 1997. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78: 2795-8.
    • (1997) J Neurophysiol , vol.78 , pp. 2795-2798
    • Watanabe, M.1    Kodama, T.2    Hikosaka, K.3
  • 84
    • 0029116316 scopus 로고
    • Modulation of memory fields by dopamine D1 receptors in prefrontal cortex
    • Williams GV, Goldman-Rakic PS,. 1995. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376: 572-5.
    • (1995) Nature , vol.376 , pp. 572-575
    • Williams, G.V.1    Goldman-Rakic, P.S.2
  • 85
    • 17344367728 scopus 로고    scopus 로고
    • Widespread origin of the primate mesofrontal dopamine system
    • Williams SM, Goldman-Rakic PS,. 1998. Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8: 321-45.
    • (1998) Cereb Cortex , vol.8 , pp. 321-345
    • Williams, S.M.1    Goldman-Rakic, P.S.2
  • 86
    • 5044225291 scopus 로고    scopus 로고
    • Genes, dopamine and cortical signal-to-noise ratio in schizophrenia
    • Winterer G, Weinberger DR,. 2004. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27: 683-90.
    • (2004) Trends Neurosci , vol.27 , pp. 683-690
    • Winterer, G.1    Weinberger, D.R.2
  • 87
    • 0029868479 scopus 로고    scopus 로고
    • Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration
    • Yang CR, Seamans JK,. 1996. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 16: 1922-35.
    • (1996) J Neurosci , vol.16 , pp. 1922-1935
    • Yang, C.R.1    Seamans, J.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.