메뉴 건너뛰기




Volumn , Issue , 2016, Pages

A comparison of machine learning algorithms for regional wheat yield prediction using NDVI time series of SPOT-VGT

Author keywords

Machine Learning; Remote sensing; Wheat yield forecasting

Indexed keywords

ARTIFICIAL INTELLIGENCE; FEATURE EXTRACTION; FORECASTING; FORESTRY; LEARNING SYSTEMS; REMOTE SENSING; SUPPORT VECTOR MACHINES; VEGETATION;

EID: 84994108569     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/Agro-Geoinformatics.2016.7577625     Document Type: Conference Paper
Times cited : (27)

References (30)
  • 1
    • 84867333091 scopus 로고    scopus 로고
    • Closing yield gaps through nutrient and water management
    • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254-257. doi:10. 1038/nature11420
    • (2012) Nature , vol.490 , Issue.7419 , pp. 254-257
    • Mueller, N.D.1    Gerber, J.S.2    Johnston, M.3    Ray, D.K.4    Ramankutty, N.5    Foley, J.A.6
  • 2
    • 84872252480 scopus 로고    scopus 로고
    • Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics
    • Sinclair, T. R., & Rufty, T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 1(2), 94-98. doi:10. 1016/j. gfs. 2012. 07. 001
    • (2012) Global Food Security , vol.1 , Issue.2 , pp. 94-98
    • Sinclair, T.R.1    Rufty, T.W.2
  • 3
    • 0037043689 scopus 로고    scopus 로고
    • Agricultural sustainability and intensive production practices
    • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677. doi:10. 1038/nature01014
    • (2002) Nature , vol.418 , Issue.6898 , pp. 671-677
    • Tilman, D.1    Cassman, K.G.2    Matson, P.A.3    Naylor, R.4    Polasky, S.5
  • 5
    • 0020421563 scopus 로고
    • The use of large-area spectral data in wheat yield estimation
    • Barnett, T. L., & Thompson, D. R. (1982). The use of large-area spectral data in wheat yield estimation. Remote Sensing of Environment, 12(6), 509-518. doi:10. 1016/0034-4257(82)90025-6
    • (1982) Remote Sensing of Environment , vol.12 , Issue.6 , pp. 509-518
    • Barnett, T.L.1    Thompson, D.R.2
  • 6
    • 0031899057 scopus 로고    scopus 로고
    • Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment
    • Rasmussen, M. S. (1998). Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment. International Journal of Remote Sensing Int. J. Remote Sensing, 19(1), 119-139. doi:10. 1080/014311698216468
    • (1998) International Journal of Remote Sensing Int. J. Remote Sensing , vol.19 , Issue.1 , pp. 119-139
    • Rasmussen, M.S.1
  • 7
    • 54849423012 scopus 로고    scopus 로고
    • Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco
    • Balaghi, R., Tychon, B., Eerens, H., & Jlibene, M. (2008). Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation, 10(4), 438-452. doi:10. 1016/j. jag. 2006. 12. 001
    • (2008) International Journal of Applied Earth Observation and Geoinformation , vol.10 , Issue.4 , pp. 438-452
    • Balaghi, R.1    Tychon, B.2    Eerens, H.3    Jlibene, M.4
  • 9
    • 85016965709 scopus 로고    scopus 로고
    • Relationship between MODIS-NDVI data and wheat yield: A case study in Northern Buenos Aires province, Argentina
    • Lopresti, M. F., Di Bella, C. M., & Degioanni, A. J. (2015). Relationship between MODIS-NDVI data and wheat yield: A case study in Northern Buenos Aires province, Argentina. Information Processing in Agriculture, 2(2), 73-84. doi:10. 1016/j. inpa. 2015. 06. 001
    • (2015) Information Processing in Agriculture , vol.2 , Issue.2 , pp. 73-84
    • Lopresti, M.F.1    Di Bella, C.M.2    Degioanni, A.J.3
  • 12
    • 0035108881 scopus 로고    scopus 로고
    • China's regional water scarcity and implications for grain supply and trade
    • Yang, H., & Zehnder, A. (2001). China's regional water scarcity and implications for grain supply and trade. Environment and Planning A, 33(1), 79-95. doi:10. 1068/a3352
    • (2001) Environment and Planning A , vol.33 , Issue.1 , pp. 79-95
    • Yang, H.1    Zehnder, A.2
  • 13
    • 0344256440 scopus 로고    scopus 로고
    • Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions
    • Royo, C., Aparicio{, N., Villegas{, D., Casadesus{, J., Monneveux, P., & Araus{, J. L. (2003). Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. International Journal of Remote Sensing, 24(22), 4403-4419. doi:10. 1080/0143116031000150059
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.22 , pp. 4403-4419
    • Royo, C.1    Aparicio, N.2    Villegas, D.3    Casadesus, J.4    Monneveux, P.5    Araus, J.L.6
  • 14
    • 84925068245 scopus 로고    scopus 로고
    • Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data
    • Heremans, S., Dong, Q., Zhang, B., Bydekerke, L., & Van Orshoven, J. (2015). Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data. Journal of Applied Remote Sensing, 9(1), 097095. doi:10. 1117/1. JRS. 9. 097095
    • (2015) Journal of Applied Remote Sensing , vol.9 , Issue.1 , pp. 097095
    • Heremans, S.1    Dong, Q.2    Zhang, B.3    Bydekerke, L.4    Van Orshoven, J.5
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. doi:10. 1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. The Journal of Animal Ecology, 77(4), 802-13. doi:10. 1111/j. 1365-2656. 2008. 01390. x
    • (2008) The Journal of Animal Ecology , vol.77 , Issue.4 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 20
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297. doi:10. 1023/A:1022627411411
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 24
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249-264. doi:10. 1016/S0304-3800(02)00257-0
    • (2003) Ecological Modelling , vol.160 , Issue.3 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 25
    • 84876538871 scopus 로고    scopus 로고
    • Domain-based benchmark experiments: Exploratory and inferential analysis
    • Retrieved from
    • Eugster, M., Hothorn, T., & Leisch, F. (2012). Domain-Based Benchmark Experiments: Exploratory and Inferential Analysis. Austrian Journal of Statistics, 41(1), 5-26. Retrieved from http://www. stat. tugraz. at/AJS/ausg121/121Leisch
    • (2012) Austrian Journal of Statistics , vol.41 , Issue.1 , pp. 5-26
    • Eugster, M.1    Hothorn, T.2    Leisch, F.3
  • 27
    • 84871477245 scopus 로고    scopus 로고
    • Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms
    • Erdal, H. I., & Karakurt, O. (2013). Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms. Journal of Hydrology, 477, 119-128. doi:10. 1016/j. jhydrol. 2012. 11. 015
    • (2013) Journal of Hydrology , vol.477 , pp. 119-128
    • Erdal, H.I.1    Karakurt, O.2
  • 28
    • 84934344088 scopus 로고    scopus 로고
    • Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): A multi-criteria comparison
    • Heremans, S., & Van Orshoven, J. (2015). Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders (Belgium): a multi-criteria comparison. International Journal of Remote Sensing, 36(11), 2934-2962. doi:10. 1080/01431161. 2015. 1054047
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.11 , pp. 2934-2962
    • Heremans, S.1    Van Orshoven, J.2
  • 30
    • 84881540805 scopus 로고    scopus 로고
    • Remotely sensed rice yield prediction using multi-temporal NDVI Data Derived from NOAA's-AVHRR
    • Huang, J., Wang, X., Li, X., Tian, H., Pan, Z., Prasad, A., . Cutler, M. (2013). Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR. PLoS ONE, 8(8), e70816. doi:10. 1371/journal. pone. 0070816
    • (2013) PLoS ONE , vol.8 , Issue.8 , pp. e70816
    • Huang, J.1    Wang, X.2    Li, X.3    Tian, H.4    Pan, Z.5    Prasad, A.6    Cutler, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.