메뉴 건너뛰기




Volumn 9, Issue 1, 2015, Pages

Potential of ensemble tree methods for early-season prediction of winter wheat yield from short time series of remotely sensed normalized difference vegetation index and in situ meteorological data

Author keywords

empirical models; ensemble trees; wheat yield estimation

Indexed keywords

CROPS; DECISION MAKING; DECISION TREES; FORESTRY; METEOROLOGY; REMOTE SENSING; TIME SERIES; VEGETATION; WEATHER FORECASTING;

EID: 84925068245     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.9.097095     Document Type: Article
Times cited : (34)

References (77)
  • 1
    • 84874788283 scopus 로고    scopus 로고
    • Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs
    • C. Atzberger, "Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs, " Remote Sens. 5(2), 949-981 (2013).
    • (2013) Remote Sens , vol.5 , Issue.2 , pp. 949-981
    • Atzberger, C.1
  • 2
    • 0030292154 scopus 로고    scopus 로고
    • Using NOAA AVHRR data to estimate maize production in the United States Corn Belt
    • M. J. Hayes andW. L. Decker, "Using NOAA AVHRR data to estimate maize production in the United States Corn Belt, " Int. J. Remote Sens. 17(16), 3189-3200 (1996).
    • (1996) Int. J. Remote Sens. , vol.17 , Issue.16 , pp. 3189-3200
    • Hayes, M.J.1    Decker, W.L.2
  • 3
    • 84860392830 scopus 로고    scopus 로고
    • Monitoring global croplands with coarse resolution Earth observations: The Global Agriculture Monitoring (GLAM) project
    • I. Becker-Reshef et al., "Monitoring global croplands with coarse resolution Earth observations: the Global Agriculture Monitoring (GLAM) project, " Remote Sens. 2(6), 1589-1609 (2010).
    • (2010) Remote Sens , vol.2 , Issue.6 , pp. 1589-1609
    • Becker-Reshef, I.1
  • 5
    • 41549159398 scopus 로고    scopus 로고
    • The early explanatory power of NDVI in crop yield modelling
    • L.Wall, D. Larocque, and P. M. Léger, "The early explanatory power of NDVI in crop yield modelling, " Int. J. Remote Sens. 29(8), 2211-2225 (2008).
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.8 , pp. 2211-2225
    • Wall, L.1    Larocque, D.2    Léger, P.M.3
  • 6
    • 84880317742 scopus 로고    scopus 로고
    • Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models
    • F. Kogan et al., "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models, " Int. J. Appl. Earth Obs. Geoinf. 23, 192-203 (2013).
    • (2013) Int. J. Appl. Earth Obs. Geoinf. , vol.23 , pp. 192-203
    • Kogan, F.1
  • 7
    • 0026443533 scopus 로고
    • Remote sensing and crop production models: Present trends
    • R. Delécolle et al., "Remote sensing and crop production models: present trends, " ISPRS J. Photogramm. Remote Sens. 47(2-3), 145-161 (1992).
    • (1992) ISPRS J. Photogramm. Remote Sens. , vol.47 , Issue.2-3 , pp. 145-161
    • Delécolle, R.1
  • 8
    • 0024483115 scopus 로고
    • WOFOST: A simulation model of crop production
    • C. A. van Diepen et al., "WOFOST: a simulation model of crop production, " Soil Use Manage. 5(1), 16-24 (1989).
    • (1989) Soil Use Manage. , vol.5 , Issue.1 , pp. 16-24
    • Van Diepen, C.A.1
  • 10
    • 6344285791 scopus 로고    scopus 로고
    • Crop yield estimation by satellite remote sensing
    • C. Ferencz et al., "Crop yield estimation by satellite remote sensing, " Int. J. Remote Sens. 25(20), 4113-4149 (2004).
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.20 , pp. 4113-4149
    • Ferencz, C.1
  • 11
    • 0019728346 scopus 로고
    • Assessing winter wheat dry matter production via spectral reflectance measurements
    • J. K. Aase and F. H. Siddoway, "Assessing winter wheat dry matter production via spectral reflectance measurements, " Remote Sens. Environ. 11, 267-277 (1981).
    • (1981) Remote Sens. Environ , vol.11 , pp. 267-277
    • Aase, J.K.1    Siddoway, F.H.2
  • 12
    • 0019392801 scopus 로고
    • Remote sensing of total dry-matter accumulation in winter wheat
    • C. J. Tucker et al., "Remote sensing of total dry-matter accumulation in winter wheat, " Remote Sens. Environ. 11, 171-189 (1981).
    • (1981) Remote Sens. Environ , vol.11 , pp. 171-189
    • Tucker, C.J.1
  • 13
    • 31044453033 scopus 로고    scopus 로고
    • Crop yield estimation model for Iowa using remote sensing and surface parameters
    • A. K. Prasad et al., "Crop yield estimation model for Iowa using remote sensing and surface parameters, " Int. J. Appl. Earth Obs. Geoinf. 8(1), 26-33 (2006).
    • (2006) Int. J. Appl. Earth Obs. Geoinf , vol.8 , Issue.1 , pp. 26-33
    • Prasad, A.K.1
  • 14
    • 0344256440 scopus 로고    scopus 로고
    • Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions
    • C. Royo et al., "Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions, " Int. J. Remote Sens. 24(22), 4403-4419 (2003).
    • (2003) Int. J. Remote Sens. , vol.24 , Issue.22 , pp. 4403-4419
    • Royo, C.1
  • 15
    • 54849411536 scopus 로고    scopus 로고
    • Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China
    • J. Ren et al., "Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China, " Int. J. Appl. Earth Obs. Geoinf. 10(4), 403-413 (2008).
    • (2008) Int. J. Appl. Earth Obs. Geoinf , vol.10 , Issue.4 , pp. 403-413
    • Ren, J.1
  • 16
    • 0037057539 scopus 로고    scopus 로고
    • Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index
    • V. K. Boken and C. F. Shaykewich, "Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index, " Int. J. Remote Sens. 23(20), 4155-4168 (2002).
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.20 , pp. 4155-4168
    • Boken, V.K.1    Shaykewich, C.F.2
  • 17
    • 0037057555 scopus 로고    scopus 로고
    • Wheat yield estimates using multi-temporal NDVI satellite imagery
    • M. P. Labus et al., "Wheat yield estimates using multi-temporal NDVI satellite imagery, " Int. J. Remote Sens. 23(20), 4169-4180 (2002).
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.20 , pp. 4169-4180
    • Labus, M.P.1
  • 18
    • 0031899057 scopus 로고    scopus 로고
    • Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment
    • M. S. Rasmussen, "Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: crop yield assessment, " Int. J. Remote Sens. 19(1), 119-139 (1998).
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.1 , pp. 119-139
    • Rasmussen, M.S.1
  • 19
    • 0031104588 scopus 로고    scopus 로고
    • Operational yield forecast using AVHRR NDVI data: Reduction of environmental and inter-annual variability
    • M. S. Rasmussen, "Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability, " Int. J. Remote Sens. 18(5), 1059-1077 (1997).
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.5 , pp. 1059-1077
    • Rasmussen, M.S.1
  • 20
    • 0021644376 scopus 로고
    • Global vegetation indices from the NOAA-7 meteorological satellite
    • J. D. Tarpley, S. R. Schneider, and R. L. Money, "Global vegetation indices from the NOAA-7 meteorological satellite, " J. Climate Appl. Meteorol. 23(3), 491-494 (1984).
    • (1984) J. Climate Appl. Meteorol. , vol.23 , Issue.3 , pp. 491-494
    • Tarpley, J.D.1    Schneider, S.R.2    Money, R.L.3
  • 21
    • 0008175934 scopus 로고
    • The role of remote sensing in determining the distribution and yield of crops
    • N. C. Brady, Ed. Academic Press, New York
    • M. E. Bauer, "The role of remote sensing in determining the distribution and yield of crops, " in Advances in Agronomy, N. C. Brady, Ed., pp. 271-304, Academic Press, New York (1975).
    • (1975) Advances in Agronomy , pp. 271-304
    • Bauer, M.E.1
  • 22
    • 0036326469 scopus 로고    scopus 로고
    • Large area operational wheat yield model development and validation based on spectral and meteorological data
    • K. R. Manjunath, M. B. Potdar, and N. L. Purohit, "Large area operational wheat yield model development and validation based on spectral and meteorological data, " Int. J. Remote Sens. 23(15), 3023-3038 (2002).
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.15 , pp. 3023-3038
    • Manjunath, K.R.1    Potdar, M.B.2    Purohit, N.L.3
  • 23
    • 85024560494 scopus 로고    scopus 로고
    • Multi-season atmospheric normalization of NOAA AVHRR derived NDVI for crop yield modeling
    • M. B. Potdar, K. R. Manjunath, and N. L. Purohit, "Multi-season atmospheric normalization of NOAA AVHRR derived NDVI for crop yield modeling, " Geocarto Int. 14(4), 52-57 (1999).
    • (1999) Geocarto Int , vol.14 , Issue.4 , pp. 52-57
    • Potdar, M.B.1    Manjunath, K.R.2    Purohit, N.L.3
  • 24
    • 0027334401 scopus 로고
    • The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction
    • N. A. Quarmby et al., "The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction, " Int. J. Remote Sens. 14(2), 199-210 (1993).
    • (1993) Int. J. Remote Sens. , vol.14 , Issue.2 , pp. 199-210
    • Quarmby, N.A.1
  • 25
    • 84881540805 scopus 로고    scopus 로고
    • Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR
    • J. Huang et al., "Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR, " PloS One 8(8), e70816 (2013).
    • (2013) PloS One , vol.8 , Issue.8 , pp. e70816
    • Huang, J.1
  • 26
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • D. K. Bolton and M. A. Friedl, "Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, " Agric. For. Meteorol. 173, 74-84 (2013).
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 27
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
    • M. S. Mkhabela et al., "Crop yield forecasting on the Canadian Prairies using MODIS NDVI data, " Agric. For. Meteorol. 151(3), 385-393 (2011).
    • (2011) Agric. For. Meteorol. , vol.151 , Issue.3 , pp. 385-393
    • Mkhabela, M.S.1
  • 28
    • 0027789615 scopus 로고
    • Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices
    • D. K. Das, K. K. Mishra, and N. Kalra, "Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices, " Int. J. Remote Sens. 14(17), 3081-3092 (1993).
    • (1993) Int. J. Remote Sens. , vol.14 , Issue.17 , pp. 3081-3092
    • Das, D.K.1    Mishra, K.K.2    Kalra, N.3
  • 29
    • 0027007342 scopus 로고
    • Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR
    • M. S. Rasmussen, "Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR, " Int. J. Remote Sens. 13(18), 3431-3442 (1992).
    • (1992) Int. J. Remote Sens. , vol.13 , Issue.18 , pp. 3431-3442
    • Rasmussen, M.S.1
  • 30
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Mach. Learn. 45(1), 5-32 (2001).
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 31
    • 71549120384 scopus 로고    scopus 로고
    • The boosting: A new idea of building models
    • D.-S. Cao et al., "The boosting: a new idea of building models, " Chemometr. Intell. Lab. Syst. 100(1), 1-11 (2010).
    • (2010) Chemometr. Intell. Lab. Syst. , vol.100 , Issue.1 , pp. 1-11
    • Cao, D.-S.1
  • 32
    • 84870666272 scopus 로고    scopus 로고
    • Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
    • J. C. Brown et al., "Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data, " Remote Sens. Environ. 130, 39-50 (2013).
    • (2013) Remote Sens. Environ. , vol.130 , pp. 39-50
    • Brown, J.C.1
  • 33
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • R. Lawrence et al., "Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis, " Remote Sens. Environ. 90(3), 331-336 (2004).
    • (2004) Remote Sens. Environ. , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1
  • 35
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • M. Pal, "Random forest classifier for remote sensing classification, " Int. J. Remote Sens. 26(1), 217-222 (2005).
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 36
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • J. A. Benediktsson, J. Chanussot, and M. Fauvel, "Multiple classifier systems in remote sensing: from basics to recent developments, " Lec. Notes Comput. Sci. 4472, 501-512 (2007).
    • (2007) Lec. Notes Comput. Sci. , vol.4472 , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 37
    • 62249107327 scopus 로고    scopus 로고
    • Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition
    • D. Kocev et al., "Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition, " Ecol. Modell. 220(8), 1159-1168 (2009).
    • (2009) Ecol. Modell. , vol.220 , Issue.8 , pp. 1159-1168
    • Kocev, D.1
  • 38
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • A. Prasad, L. Iverson, and A. Liaw, "Newer classification and regression tree techniques: bagging and random forests for ecological prediction, " Ecosystems 9(2), 181-199 (2006).
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 181-199
    • Prasad, A.1    Iverson, L.2    Liaw, A.3
  • 39
    • 72049126864 scopus 로고    scopus 로고
    • Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals
    • S. J. Pittman, B. M. Costa, and T. A. Battista, "Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals, " J. Coastal Res. 53, 27-38 (2009).
    • (2009) J. Coastal Res. , vol.53 , pp. 27-38
    • Pittman, S.J.1    Costa, B.M.2    Battista, T.A.3
  • 40
    • 33749591316 scopus 로고    scopus 로고
    • Variation in demersal fish species richness in the oceans surrounding New Zealand: An analysis using boosted regression trees
    • J. R. Leathwick et al., "Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees, " Mar. Ecol. Prog. Ser. 321, 267-281 (2006).
    • (2006) Mar. Ecol. Prog. Ser. , vol.321 , pp. 267-281
    • Leathwick, J.R.1
  • 41
    • 34247115449 scopus 로고    scopus 로고
    • Boosted trees for ecological modeling and prediction
    • G. De'ath, "Boosted trees for ecological modeling and prediction, " Ecology 88(1), 243-251 (2007).
    • (2007) Ecology , vol.88 , Issue.1 , pp. 243-251
    • De'ath, G.1
  • 42
    • 84864512878 scopus 로고    scopus 로고
    • High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
    • O. Mutanga, E. Adam, and M. A. Cho, "High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, " Int. J. Appl. Earth Obs. Geoinf. 18, 399-406 (2012).
    • (2012) Int. J. Appl. Earth Obs. Geoinf. , vol.18 , pp. 399-406
    • Mutanga, O.1    Adam, E.2    Cho, M.A.3
  • 44
    • 0031899225 scopus 로고    scopus 로고
    • Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part I: Assessment of net primary production
    • M. S. Rasmussen, "Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part I: assessment of net primary production, " Int. J. Remote Sens. 19(1), 97-117 (1998).
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.1 , pp. 97-117
    • Rasmussen, M.S.1
  • 45
    • 23744485821 scopus 로고    scopus 로고
    • Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data
    • C. J. Weissteiner and W. Kühbauch, "Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data, " J. Agron. Crop Sci. 191(4), 308-320 (2005).
    • (2005) J. Agron. Crop Sci. , vol.191 , Issue.4 , pp. 308-320
    • Weissteiner, C.J.1    Kühbauch, W.2
  • 46
    • 0011724876 scopus 로고
    • Effect of the calibration of AVHRR data on the normalized difference vegetation index and compositing
    • M. A. D'Iorio, J. Cihlar, and C. R. Morasse, "Effect of the calibration of AVHRR data on the normalized difference vegetation index and compositing, " Can. J. Remote Sens. 17, 251-262 (1991).
    • (1991) Can. J. Remote Sens. , vol.17 , pp. 251-262
    • D'Iorio, M.A.1    Cihlar, J.2    Morasse, C.R.3
  • 47
    • 85066596430 scopus 로고    scopus 로고
    • Joint Research Centre 14 February 2015
    • Joint Research Centre, "Action FOODSEC, " 2014 http://mars.jrc.ec.europa.eu/mars/Aboutus/FOODSEC (14 February 2015).
    • (2014) Action FOODSEC
  • 48
    • 23744434616 scopus 로고    scopus 로고
    • Decision tree regression for soft classification of remote sensing data
    • M. Xu et al., "Decision tree regression for soft classification of remote sensing data, " Remote Sens. Environ. 97(3), 322-336 (2005).
    • (2005) Remote Sens. Environ. , vol.97 , Issue.3 , pp. 322-336
    • Xu, M.1
  • 49
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • J. Elith, J. R. Leathwick, and T. Hastie, "A working guide to boosted regression trees, " J. Anim. Ecol. 77(4), 802-813 (2008).
    • (2008) J. Anim. Ecol. , vol.77 , Issue.4 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 50
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors, " Mach. Learn. 24(2), 123-140 (1996).
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 52
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
    • C. Strobl, J. Malley, and G. Tutz, "An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests, " Psychol. Methods 14(4), 323-348 (2009).
    • (2009) Psychol. Methods , vol.14 , Issue.4 , pp. 323-348
    • Strobl, C.1    Malley, J.2    Tutz, G.3
  • 53
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, " Mach. Learn. 40(2), 139-157 (2000).
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 55
    • 72449170109 scopus 로고    scopus 로고
    • An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
    • C. Strobl, "An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests, " Psychol. Methods 14(4), 323 (2009).
    • (2009) Psychol. Methods , vol.14 , Issue.4 , pp. 323
    • Strobl, C.1
  • 57
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • A. Liaw, "Classification and regression by random forest, " R News 2(3), 18-22 (2002).
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1
  • 58
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection, " Artif. Intell. 97(1-2), 273-324 (1997).
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 60
    • 6344233728 scopus 로고    scopus 로고
    • Feature ranking and best feature subset using mutual information
    • S. Cang and D. Partridge, "Feature ranking and best feature subset using mutual information, " Neural Comput. Appl. 13(3), 175-184 (2004).
    • (2004) Neural Comput. Appl. , vol.13 , Issue.3 , pp. 175-184
    • Cang, S.1    Partridge, D.2
  • 61
    • 84899452594 scopus 로고    scopus 로고
    • A review of methods for mapping and prediction of inventory attributes for operational forest management
    • K. D. Brosofske et al., "A review of methods for mapping and prediction of inventory attributes for operational forest management, " For. Sci. 60(4), 733-756 (2014).
    • (2014) For. Sci. , vol.60 , Issue.4 , pp. 733-756
    • Brosofske, K.D.1
  • 62
    • 63949084440 scopus 로고    scopus 로고
    • Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA
    • M. J. Falkowski et al., "Characterizing forest succession with lidar data: an evaluation for the Inland Northwest, USA, " Remote Sens. Environ. 113(5), 946-956 (2009).
    • (2009) Remote Sens. Environ. , vol.113 , Issue.5 , pp. 946-956
    • Falkowski, M.J.1
  • 63
    • 84856982478 scopus 로고    scopus 로고
    • Multi-scale object-based image analysis and feature selection of multi-sensor Earth observation imagery using random forests
    • D. C. Duro, S. E. Franklin, and M. G. Dubé, "Multi-scale object-based image analysis and feature selection of multi-sensor Earth observation imagery using random forests, " Int. J. Remote Sens. 33(14), 4502-4526 (2012).
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.14 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 64
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • R. J. May et al., "Non-linear variable selection for artificial neural networks using partial mutual information, " Environ. Modell. Softw. 23(10-11), 1312-1326 (2008).
    • (2008) Environ. Modell. Softw. , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1
  • 67
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • J. Reunanen, "Overfitting in making comparisons between variable selection methods, " J. Mach. Learn. Res. 3, 1371-1382 (2003).
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 68
    • 84904545240 scopus 로고    scopus 로고
    • Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries
    • W. Kowalik et al., "Yield estimation using SPOT-VEGETATION products: a case study of wheat in European countries, " Int. J. Appl. Earth Obs. Geoinf. 32, 228-239 (2014).
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.32 , pp. 228-239
    • Kowalik, W.1
  • 69
    • 0037903233 scopus 로고    scopus 로고
    • Crop yield assessment from remote sensing
    • P. C. Doraiswamy et al., "Crop yield assessment from remote sensing, " Photogramm. Eng. Remote Sens. 69(6), 665-674 (2003).
    • (2003) Photogramm. Eng. Remote Sens. , vol.69 , Issue.6 , pp. 665-674
    • Doraiswamy, P.C.1
  • 70
    • 77949487217 scopus 로고    scopus 로고
    • A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data
    • I. Becker-Reshef et al., "A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, " Remote Sens. Environ. 114(6), 1312-1323 (2010).
    • (2010) Remote Sens. Environ. , vol.114 , Issue.6 , pp. 1312-1323
    • Becker-Reshef, I.1
  • 71
    • 38449114584 scopus 로고    scopus 로고
    • Random forests for classification in ecology
    • D. R. Cutler et al., "Random forests for classification in ecology, " Ecology 88(11), 2783-2792 (2007).
    • (2007) Ecology , vol.88 , Issue.11 , pp. 2783-2792
    • Cutler, D.R.1
  • 72
    • 34247344426 scopus 로고    scopus 로고
    • Can wheat yield be assessed by early measurements of normalized difference vegetation index?
    • J. Marti et al., "Can wheat yield be assessed by early measurements of normalized difference vegetation index?, " Ann. Appl. Biol. 150(2), 253-257 (2007).
    • (2007) Ann. Appl. Biol. , vol.150 , Issue.2 , pp. 253-257
    • Marti, J.1
  • 73
    • 0027789641 scopus 로고
    • Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data. A case study: Niger 1986-89
    • F. Maselli et al., "Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data. A case study: Niger 1986-89, " Int. J. Remote Sens. 14(18), 3471-3487 (1993).
    • (1993) Int. J. Remote Sens. , vol.14 , Issue.18 , pp. 3471-3487
    • Maselli, F.1
  • 74
    • 1142269707 scopus 로고    scopus 로고
    • VEGETATION/SPOT: An operational mission for the Earth monitoring; Presentation of new standard products
    • P. Maisongrande, B. Duchemin, and G. Dedieu, "VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products, " Int. J. Remote Sens. 25(1), 9-14 (2004).
    • (2004) Int. J. Remote Sens. , vol.25 , Issue.1 , pp. 9-14
    • Maisongrande, P.1    Duchemin, B.2    Dedieu, G.3
  • 75
    • 84897029668 scopus 로고    scopus 로고
    • PROBA-V mission for global vegetation monitoring: Standard products and image quality
    • W. Dierckx et al., "PROBA-V mission for global vegetation monitoring: standard products and image quality, " Int. J. Remote Sens. 35(7), 2589-2614 (2014).
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.7 , pp. 2589-2614
    • Dierckx, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.