-
1
-
-
84874788283
-
Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs
-
C. Atzberger, "Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs, " Remote Sens. 5(2), 949-981 (2013).
-
(2013)
Remote Sens
, vol.5
, Issue.2
, pp. 949-981
-
-
Atzberger, C.1
-
2
-
-
0030292154
-
Using NOAA AVHRR data to estimate maize production in the United States Corn Belt
-
M. J. Hayes andW. L. Decker, "Using NOAA AVHRR data to estimate maize production in the United States Corn Belt, " Int. J. Remote Sens. 17(16), 3189-3200 (1996).
-
(1996)
Int. J. Remote Sens.
, vol.17
, Issue.16
, pp. 3189-3200
-
-
Hayes, M.J.1
Decker, W.L.2
-
3
-
-
84860392830
-
Monitoring global croplands with coarse resolution Earth observations: The Global Agriculture Monitoring (GLAM) project
-
I. Becker-Reshef et al., "Monitoring global croplands with coarse resolution Earth observations: the Global Agriculture Monitoring (GLAM) project, " Remote Sens. 2(6), 1589-1609 (2010).
-
(2010)
Remote Sens
, vol.2
, Issue.6
, pp. 1589-1609
-
-
Becker-Reshef, I.1
-
5
-
-
41549159398
-
The early explanatory power of NDVI in crop yield modelling
-
L.Wall, D. Larocque, and P. M. Léger, "The early explanatory power of NDVI in crop yield modelling, " Int. J. Remote Sens. 29(8), 2211-2225 (2008).
-
(2008)
Int. J. Remote Sens.
, vol.29
, Issue.8
, pp. 2211-2225
-
-
Wall, L.1
Larocque, D.2
Léger, P.M.3
-
6
-
-
84880317742
-
Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models
-
F. Kogan et al., "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models, " Int. J. Appl. Earth Obs. Geoinf. 23, 192-203 (2013).
-
(2013)
Int. J. Appl. Earth Obs. Geoinf.
, vol.23
, pp. 192-203
-
-
Kogan, F.1
-
7
-
-
0026443533
-
Remote sensing and crop production models: Present trends
-
R. Delécolle et al., "Remote sensing and crop production models: present trends, " ISPRS J. Photogramm. Remote Sens. 47(2-3), 145-161 (1992).
-
(1992)
ISPRS J. Photogramm. Remote Sens.
, vol.47
, Issue.2-3
, pp. 145-161
-
-
Delécolle, R.1
-
8
-
-
0024483115
-
WOFOST: A simulation model of crop production
-
C. A. van Diepen et al., "WOFOST: a simulation model of crop production, " Soil Use Manage. 5(1), 16-24 (1989).
-
(1989)
Soil Use Manage.
, vol.5
, Issue.1
, pp. 16-24
-
-
Van Diepen, C.A.1
-
10
-
-
6344285791
-
Crop yield estimation by satellite remote sensing
-
C. Ferencz et al., "Crop yield estimation by satellite remote sensing, " Int. J. Remote Sens. 25(20), 4113-4149 (2004).
-
(2004)
Int. J. Remote Sens.
, vol.25
, Issue.20
, pp. 4113-4149
-
-
Ferencz, C.1
-
11
-
-
0019728346
-
Assessing winter wheat dry matter production via spectral reflectance measurements
-
J. K. Aase and F. H. Siddoway, "Assessing winter wheat dry matter production via spectral reflectance measurements, " Remote Sens. Environ. 11, 267-277 (1981).
-
(1981)
Remote Sens. Environ
, vol.11
, pp. 267-277
-
-
Aase, J.K.1
Siddoway, F.H.2
-
12
-
-
0019392801
-
Remote sensing of total dry-matter accumulation in winter wheat
-
C. J. Tucker et al., "Remote sensing of total dry-matter accumulation in winter wheat, " Remote Sens. Environ. 11, 171-189 (1981).
-
(1981)
Remote Sens. Environ
, vol.11
, pp. 171-189
-
-
Tucker, C.J.1
-
13
-
-
31044453033
-
Crop yield estimation model for Iowa using remote sensing and surface parameters
-
A. K. Prasad et al., "Crop yield estimation model for Iowa using remote sensing and surface parameters, " Int. J. Appl. Earth Obs. Geoinf. 8(1), 26-33 (2006).
-
(2006)
Int. J. Appl. Earth Obs. Geoinf
, vol.8
, Issue.1
, pp. 26-33
-
-
Prasad, A.K.1
-
14
-
-
0344256440
-
Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions
-
C. Royo et al., "Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions, " Int. J. Remote Sens. 24(22), 4403-4419 (2003).
-
(2003)
Int. J. Remote Sens.
, vol.24
, Issue.22
, pp. 4403-4419
-
-
Royo, C.1
-
15
-
-
54849411536
-
Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China
-
J. Ren et al., "Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China, " Int. J. Appl. Earth Obs. Geoinf. 10(4), 403-413 (2008).
-
(2008)
Int. J. Appl. Earth Obs. Geoinf
, vol.10
, Issue.4
, pp. 403-413
-
-
Ren, J.1
-
16
-
-
0037057539
-
Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index
-
V. K. Boken and C. F. Shaykewich, "Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index, " Int. J. Remote Sens. 23(20), 4155-4168 (2002).
-
(2002)
Int. J. Remote Sens.
, vol.23
, Issue.20
, pp. 4155-4168
-
-
Boken, V.K.1
Shaykewich, C.F.2
-
17
-
-
0037057555
-
Wheat yield estimates using multi-temporal NDVI satellite imagery
-
M. P. Labus et al., "Wheat yield estimates using multi-temporal NDVI satellite imagery, " Int. J. Remote Sens. 23(20), 4169-4180 (2002).
-
(2002)
Int. J. Remote Sens.
, vol.23
, Issue.20
, pp. 4169-4180
-
-
Labus, M.P.1
-
18
-
-
0031899057
-
Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment
-
M. S. Rasmussen, "Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: crop yield assessment, " Int. J. Remote Sens. 19(1), 119-139 (1998).
-
(1998)
Int. J. Remote Sens.
, vol.19
, Issue.1
, pp. 119-139
-
-
Rasmussen, M.S.1
-
19
-
-
0031104588
-
Operational yield forecast using AVHRR NDVI data: Reduction of environmental and inter-annual variability
-
M. S. Rasmussen, "Operational yield forecast using AVHRR NDVI data: reduction of environmental and inter-annual variability, " Int. J. Remote Sens. 18(5), 1059-1077 (1997).
-
(1997)
Int. J. Remote Sens.
, vol.18
, Issue.5
, pp. 1059-1077
-
-
Rasmussen, M.S.1
-
20
-
-
0021644376
-
Global vegetation indices from the NOAA-7 meteorological satellite
-
J. D. Tarpley, S. R. Schneider, and R. L. Money, "Global vegetation indices from the NOAA-7 meteorological satellite, " J. Climate Appl. Meteorol. 23(3), 491-494 (1984).
-
(1984)
J. Climate Appl. Meteorol.
, vol.23
, Issue.3
, pp. 491-494
-
-
Tarpley, J.D.1
Schneider, S.R.2
Money, R.L.3
-
21
-
-
0008175934
-
The role of remote sensing in determining the distribution and yield of crops
-
N. C. Brady, Ed. Academic Press, New York
-
M. E. Bauer, "The role of remote sensing in determining the distribution and yield of crops, " in Advances in Agronomy, N. C. Brady, Ed., pp. 271-304, Academic Press, New York (1975).
-
(1975)
Advances in Agronomy
, pp. 271-304
-
-
Bauer, M.E.1
-
22
-
-
0036326469
-
Large area operational wheat yield model development and validation based on spectral and meteorological data
-
K. R. Manjunath, M. B. Potdar, and N. L. Purohit, "Large area operational wheat yield model development and validation based on spectral and meteorological data, " Int. J. Remote Sens. 23(15), 3023-3038 (2002).
-
(2002)
Int. J. Remote Sens.
, vol.23
, Issue.15
, pp. 3023-3038
-
-
Manjunath, K.R.1
Potdar, M.B.2
Purohit, N.L.3
-
23
-
-
85024560494
-
Multi-season atmospheric normalization of NOAA AVHRR derived NDVI for crop yield modeling
-
M. B. Potdar, K. R. Manjunath, and N. L. Purohit, "Multi-season atmospheric normalization of NOAA AVHRR derived NDVI for crop yield modeling, " Geocarto Int. 14(4), 52-57 (1999).
-
(1999)
Geocarto Int
, vol.14
, Issue.4
, pp. 52-57
-
-
Potdar, M.B.1
Manjunath, K.R.2
Purohit, N.L.3
-
24
-
-
0027334401
-
The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction
-
N. A. Quarmby et al., "The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction, " Int. J. Remote Sens. 14(2), 199-210 (1993).
-
(1993)
Int. J. Remote Sens.
, vol.14
, Issue.2
, pp. 199-210
-
-
Quarmby, N.A.1
-
25
-
-
84881540805
-
Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR
-
J. Huang et al., "Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR, " PloS One 8(8), e70816 (2013).
-
(2013)
PloS One
, vol.8
, Issue.8
, pp. e70816
-
-
Huang, J.1
-
26
-
-
84875117682
-
Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
-
D. K. Bolton and M. A. Friedl, "Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, " Agric. For. Meteorol. 173, 74-84 (2013).
-
(2013)
Agric. For. Meteorol.
, vol.173
, pp. 74-84
-
-
Bolton, D.K.1
Friedl, M.A.2
-
27
-
-
78651435852
-
Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
-
M. S. Mkhabela et al., "Crop yield forecasting on the Canadian Prairies using MODIS NDVI data, " Agric. For. Meteorol. 151(3), 385-393 (2011).
-
(2011)
Agric. For. Meteorol.
, vol.151
, Issue.3
, pp. 385-393
-
-
Mkhabela, M.S.1
-
28
-
-
0027789615
-
Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices
-
D. K. Das, K. K. Mishra, and N. Kalra, "Assessing growth and yield of wheat using remotely-sensed canopy temperature and spectral indices, " Int. J. Remote Sens. 14(17), 3081-3092 (1993).
-
(1993)
Int. J. Remote Sens.
, vol.14
, Issue.17
, pp. 3081-3092
-
-
Das, D.K.1
Mishra, K.K.2
Kalra, N.3
-
29
-
-
0027007342
-
Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR
-
M. S. Rasmussen, "Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR, " Int. J. Remote Sens. 13(18), 3431-3442 (1992).
-
(1992)
Int. J. Remote Sens.
, vol.13
, Issue.18
, pp. 3431-3442
-
-
Rasmussen, M.S.1
-
30
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Mach. Learn. 45(1), 5-32 (2001).
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
31
-
-
71549120384
-
The boosting: A new idea of building models
-
D.-S. Cao et al., "The boosting: a new idea of building models, " Chemometr. Intell. Lab. Syst. 100(1), 1-11 (2010).
-
(2010)
Chemometr. Intell. Lab. Syst.
, vol.100
, Issue.1
, pp. 1-11
-
-
Cao, D.-S.1
-
32
-
-
84870666272
-
Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
-
J. C. Brown et al., "Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data, " Remote Sens. Environ. 130, 39-50 (2013).
-
(2013)
Remote Sens. Environ.
, vol.130
, pp. 39-50
-
-
Brown, J.C.1
-
33
-
-
1842431416
-
Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
-
R. Lawrence et al., "Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis, " Remote Sens. Environ. 90(3), 331-336 (2004).
-
(2004)
Remote Sens. Environ.
, vol.90
, Issue.3
, pp. 331-336
-
-
Lawrence, R.1
-
34
-
-
0036821351
-
Multiple classifiers applied to multisource remote sensing data
-
G. J. Briem, J. A. Benediktsson, and J. R. Sveinsson, "Multiple classifiers applied to multisource remote sensing data, " IEEE Trans. Geosci. Remote Sens. 40(10), 2291-2299 (2002).
-
(2002)
IEEE Trans. Geosci. Remote Sens.
, vol.40
, Issue.10
, pp. 2291-2299
-
-
Briem, G.J.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
35
-
-
13344278660
-
Random forest classifier for remote sensing classification
-
M. Pal, "Random forest classifier for remote sensing classification, " Int. J. Remote Sens. 26(1), 217-222 (2005).
-
(2005)
Int. J. Remote Sens.
, vol.26
, Issue.1
, pp. 217-222
-
-
Pal, M.1
-
36
-
-
37249003229
-
Multiple classifier systems in remote sensing: From basics to recent developments
-
J. A. Benediktsson, J. Chanussot, and M. Fauvel, "Multiple classifier systems in remote sensing: from basics to recent developments, " Lec. Notes Comput. Sci. 4472, 501-512 (2007).
-
(2007)
Lec. Notes Comput. Sci.
, vol.4472
, pp. 501-512
-
-
Benediktsson, J.A.1
Chanussot, J.2
Fauvel, M.3
-
37
-
-
62249107327
-
Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition
-
D. Kocev et al., "Using single-and multi-target regression trees and ensembles to model a compound index of vegetation condition, " Ecol. Modell. 220(8), 1159-1168 (2009).
-
(2009)
Ecol. Modell.
, vol.220
, Issue.8
, pp. 1159-1168
-
-
Kocev, D.1
-
38
-
-
33645330972
-
Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
-
A. Prasad, L. Iverson, and A. Liaw, "Newer classification and regression tree techniques: bagging and random forests for ecological prediction, " Ecosystems 9(2), 181-199 (2006).
-
(2006)
Ecosystems
, vol.9
, Issue.2
, pp. 181-199
-
-
Prasad, A.1
Iverson, L.2
Liaw, A.3
-
39
-
-
72049126864
-
Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals
-
S. J. Pittman, B. M. Costa, and T. A. Battista, "Using Lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals, " J. Coastal Res. 53, 27-38 (2009).
-
(2009)
J. Coastal Res.
, vol.53
, pp. 27-38
-
-
Pittman, S.J.1
Costa, B.M.2
Battista, T.A.3
-
40
-
-
33749591316
-
Variation in demersal fish species richness in the oceans surrounding New Zealand: An analysis using boosted regression trees
-
J. R. Leathwick et al., "Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees, " Mar. Ecol. Prog. Ser. 321, 267-281 (2006).
-
(2006)
Mar. Ecol. Prog. Ser.
, vol.321
, pp. 267-281
-
-
Leathwick, J.R.1
-
41
-
-
34247115449
-
Boosted trees for ecological modeling and prediction
-
G. De'ath, "Boosted trees for ecological modeling and prediction, " Ecology 88(1), 243-251 (2007).
-
(2007)
Ecology
, vol.88
, Issue.1
, pp. 243-251
-
-
De'ath, G.1
-
42
-
-
84864512878
-
High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
-
O. Mutanga, E. Adam, and M. A. Cho, "High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, " Int. J. Appl. Earth Obs. Geoinf. 18, 399-406 (2012).
-
(2012)
Int. J. Appl. Earth Obs. Geoinf.
, vol.18
, pp. 399-406
-
-
Mutanga, O.1
Adam, E.2
Cho, M.A.3
-
44
-
-
0031899225
-
Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part I: Assessment of net primary production
-
M. S. Rasmussen, "Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part I: assessment of net primary production, " Int. J. Remote Sens. 19(1), 97-117 (1998).
-
(1998)
Int. J. Remote Sens.
, vol.19
, Issue.1
, pp. 97-117
-
-
Rasmussen, M.S.1
-
45
-
-
23744485821
-
Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data
-
C. J. Weissteiner and W. Kühbauch, "Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data, " J. Agron. Crop Sci. 191(4), 308-320 (2005).
-
(2005)
J. Agron. Crop Sci.
, vol.191
, Issue.4
, pp. 308-320
-
-
Weissteiner, C.J.1
Kühbauch, W.2
-
46
-
-
0011724876
-
Effect of the calibration of AVHRR data on the normalized difference vegetation index and compositing
-
M. A. D'Iorio, J. Cihlar, and C. R. Morasse, "Effect of the calibration of AVHRR data on the normalized difference vegetation index and compositing, " Can. J. Remote Sens. 17, 251-262 (1991).
-
(1991)
Can. J. Remote Sens.
, vol.17
, pp. 251-262
-
-
D'Iorio, M.A.1
Cihlar, J.2
Morasse, C.R.3
-
47
-
-
85066596430
-
-
Joint Research Centre 14 February 2015
-
Joint Research Centre, "Action FOODSEC, " 2014 http://mars.jrc.ec.europa.eu/mars/Aboutus/FOODSEC (14 February 2015).
-
(2014)
Action FOODSEC
-
-
-
48
-
-
23744434616
-
Decision tree regression for soft classification of remote sensing data
-
M. Xu et al., "Decision tree regression for soft classification of remote sensing data, " Remote Sens. Environ. 97(3), 322-336 (2005).
-
(2005)
Remote Sens. Environ.
, vol.97
, Issue.3
, pp. 322-336
-
-
Xu, M.1
-
49
-
-
44849118698
-
A working guide to boosted regression trees
-
J. Elith, J. R. Leathwick, and T. Hastie, "A working guide to boosted regression trees, " J. Anim. Ecol. 77(4), 802-813 (2008).
-
(2008)
J. Anim. Ecol.
, vol.77
, Issue.4
, pp. 802-813
-
-
Elith, J.1
Leathwick, J.R.2
Hastie, T.3
-
50
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors, " Mach. Learn. 24(2), 123-140 (1996).
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
51
-
-
0003684449
-
-
Springer, New York
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, New York (2009).
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Ed.
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
52
-
-
72449170109
-
An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests
-
C. Strobl, J. Malley, and G. Tutz, "An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests, " Psychol. Methods 14(4), 323-348 (2009).
-
(2009)
Psychol. Methods
, vol.14
, Issue.4
, pp. 323-348
-
-
Strobl, C.1
Malley, J.2
Tutz, G.3
-
53
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, " Mach. Learn. 40(2), 139-157 (2000).
-
(2000)
Mach. Learn.
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
54
-
-
30344471525
-
Random forests for land cover classification
-
P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random forests for land cover classification, " Pattern Recognit. Lett. 27(4), 294-300 (2006).
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.4
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
55
-
-
72449170109
-
An introduction to recursive partitioning: Rationale, application and characteristics of classification and regression trees, bagging and random forests
-
C. Strobl, "An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests, " Psychol. Methods 14(4), 323 (2009).
-
(2009)
Psychol. Methods
, vol.14
, Issue.4
, pp. 323
-
-
Strobl, C.1
-
57
-
-
0345040873
-
Classification and regression by random forest
-
A. Liaw, "Classification and regression by random forest, " R News 2(3), 18-22 (2002).
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
-
58
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection, " Artif. Intell. 97(1-2), 273-324 (1997).
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
59
-
-
84874194408
-
A review of feature selection methods on synthetic data
-
V. Bolón-Canedo, N. Sánchez-Maronõ, and A. Alonso-Betanzos, "A review of feature selection methods on synthetic data, " Knowl. Inf. Syst. 34(3), 483-519 (2013).
-
(2013)
Knowl. Inf. Syst.
, vol.34
, Issue.3
, pp. 483-519
-
-
Bolón-Canedo, V.1
Sánchez-Maronõ, N.2
Alonso-Betanzos, A.3
-
60
-
-
6344233728
-
Feature ranking and best feature subset using mutual information
-
S. Cang and D. Partridge, "Feature ranking and best feature subset using mutual information, " Neural Comput. Appl. 13(3), 175-184 (2004).
-
(2004)
Neural Comput. Appl.
, vol.13
, Issue.3
, pp. 175-184
-
-
Cang, S.1
Partridge, D.2
-
61
-
-
84899452594
-
A review of methods for mapping and prediction of inventory attributes for operational forest management
-
K. D. Brosofske et al., "A review of methods for mapping and prediction of inventory attributes for operational forest management, " For. Sci. 60(4), 733-756 (2014).
-
(2014)
For. Sci.
, vol.60
, Issue.4
, pp. 733-756
-
-
Brosofske, K.D.1
-
62
-
-
63949084440
-
Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA
-
M. J. Falkowski et al., "Characterizing forest succession with lidar data: an evaluation for the Inland Northwest, USA, " Remote Sens. Environ. 113(5), 946-956 (2009).
-
(2009)
Remote Sens. Environ.
, vol.113
, Issue.5
, pp. 946-956
-
-
Falkowski, M.J.1
-
63
-
-
84856982478
-
Multi-scale object-based image analysis and feature selection of multi-sensor Earth observation imagery using random forests
-
D. C. Duro, S. E. Franklin, and M. G. Dubé, "Multi-scale object-based image analysis and feature selection of multi-sensor Earth observation imagery using random forests, " Int. J. Remote Sens. 33(14), 4502-4526 (2012).
-
(2012)
Int. J. Remote Sens.
, vol.33
, Issue.14
, pp. 4502-4526
-
-
Duro, D.C.1
Franklin, S.E.2
Dubé, M.G.3
-
64
-
-
44749087316
-
Non-linear variable selection for artificial neural networks using partial mutual information
-
R. J. May et al., "Non-linear variable selection for artificial neural networks using partial mutual information, " Environ. Modell. Softw. 23(10-11), 1312-1326 (2008).
-
(2008)
Environ. Modell. Softw.
, vol.23
, Issue.10-11
, pp. 1312-1326
-
-
May, R.J.1
-
65
-
-
84863944042
-
Review of input variable selection methods for artificial neural networks
-
InTech
-
R. May, G. Dandy, and H. Maier, "Review of input variable selection methods for artificial neural networks, " in Artificial Neural Networks-Methodological Advances in Biomedical Applications, K. Suzuki, Ed., pp. 19-44, InTech (2011).
-
(2011)
Artificial Neural Networks-Methodological Advances in Biomedical Applications, K. Suzuki, Ed.
, pp. 19-44
-
-
May, R.1
Dandy, G.2
Maier, H.3
-
67
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
J. Reunanen, "Overfitting in making comparisons between variable selection methods, " J. Mach. Learn. Res. 3, 1371-1382 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
68
-
-
84904545240
-
Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries
-
W. Kowalik et al., "Yield estimation using SPOT-VEGETATION products: a case study of wheat in European countries, " Int. J. Appl. Earth Obs. Geoinf. 32, 228-239 (2014).
-
(2014)
Int. J. Appl. Earth Obs. Geoinf.
, vol.32
, pp. 228-239
-
-
Kowalik, W.1
-
69
-
-
0037903233
-
Crop yield assessment from remote sensing
-
P. C. Doraiswamy et al., "Crop yield assessment from remote sensing, " Photogramm. Eng. Remote Sens. 69(6), 665-674 (2003).
-
(2003)
Photogramm. Eng. Remote Sens.
, vol.69
, Issue.6
, pp. 665-674
-
-
Doraiswamy, P.C.1
-
70
-
-
77949487217
-
A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data
-
I. Becker-Reshef et al., "A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data, " Remote Sens. Environ. 114(6), 1312-1323 (2010).
-
(2010)
Remote Sens. Environ.
, vol.114
, Issue.6
, pp. 1312-1323
-
-
Becker-Reshef, I.1
-
71
-
-
38449114584
-
Random forests for classification in ecology
-
D. R. Cutler et al., "Random forests for classification in ecology, " Ecology 88(11), 2783-2792 (2007).
-
(2007)
Ecology
, vol.88
, Issue.11
, pp. 2783-2792
-
-
Cutler, D.R.1
-
72
-
-
34247344426
-
Can wheat yield be assessed by early measurements of normalized difference vegetation index?
-
J. Marti et al., "Can wheat yield be assessed by early measurements of normalized difference vegetation index?, " Ann. Appl. Biol. 150(2), 253-257 (2007).
-
(2007)
Ann. Appl. Biol.
, vol.150
, Issue.2
, pp. 253-257
-
-
Marti, J.1
-
73
-
-
0027789641
-
Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data. A case study: Niger 1986-89
-
F. Maselli et al., "Environmental monitoring and crop forecasting in the Sahel through the use of NOAA NDVI data. A case study: Niger 1986-89, " Int. J. Remote Sens. 14(18), 3471-3487 (1993).
-
(1993)
Int. J. Remote Sens.
, vol.14
, Issue.18
, pp. 3471-3487
-
-
Maselli, F.1
-
74
-
-
1142269707
-
VEGETATION/SPOT: An operational mission for the Earth monitoring; Presentation of new standard products
-
P. Maisongrande, B. Duchemin, and G. Dedieu, "VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products, " Int. J. Remote Sens. 25(1), 9-14 (2004).
-
(2004)
Int. J. Remote Sens.
, vol.25
, Issue.1
, pp. 9-14
-
-
Maisongrande, P.1
Duchemin, B.2
Dedieu, G.3
-
75
-
-
84897029668
-
PROBA-V mission for global vegetation monitoring: Standard products and image quality
-
W. Dierckx et al., "PROBA-V mission for global vegetation monitoring: standard products and image quality, " Int. J. Remote Sens. 35(7), 2589-2614 (2014).
-
(2014)
Int. J. Remote Sens.
, vol.35
, Issue.7
, pp. 2589-2614
-
-
Dierckx, W.1
|