메뉴 건너뛰기




Volumn 69, Issue , 2017, Pages 1339-1351

Collaborative filtering and deep learning based recommendation system for cold start items

Author keywords

Cold start problem; Collaborative filtering; Data mining; Deep learning neural network; Recommendation system

Indexed keywords

COLLABORATIVE FILTERING; DATA MINING; ELECTRONIC COMMERCE; INTELLIGENT CONTROL; INTELLIGENT SYSTEMS; ONLINE SYSTEMS; QUALITY OF SERVICE; RATING; SOCIAL NETWORKING (ONLINE); USER INTERFACES;

EID: 84993997491     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2016.09.040     Document Type: Article
Times cited : (602)

References (30)
  • 3
    • 84894047367 scopus 로고    scopus 로고
    • Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols
    • Campos, P.G., Dez, F., Cantador, I., Time-aware recommender systems: A comprehensive survey and analysis of existing evaluation protocols. User Modeling and User-Adapted Interaction 24:1–2 (2014), 67–119.
    • (2014) User Modeling and User-Adapted Interaction , vol.24 , Issue.1-2 , pp. 67-119
    • Campos, P.G.1    Dez, F.2    Cantador, I.3
  • 7
    • 77950364314 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Koren, Y., Collaborative filtering with temporal dynamics. Communications of the ACM 53:4 (2010), 89–97.
    • (2010) Communications of the ACM , vol.53 , Issue.4 , pp. 89-97
    • Koren, Y.1
  • 8
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Koren, Y., Bell, R., Volinsky, C., Matrix factorization techniques for recommender systems. Computer(8), 2009, 30–37.
    • (2009) Computer , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 10
    • 2942597326 scopus 로고    scopus 로고
    • Amazon. com recommendations: Item-to-item collaborative filtering
    • Linden, G., Smith, B., York, J., Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7:1 (2003), 76–80.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 12
    • 84930044846 scopus 로고    scopus 로고
    • Improving matrix factorization recommendations for examples in cold start
    • Ocepeka, U., Rugeljb, J., Bosnica, Z., Improving matrix factorization recommendations for examples in cold start. Experts Systems with Applications 42:19 (2015), 6784–6794.
    • (2015) Experts Systems with Applications , vol.42 , Issue.19 , pp. 6784-6794
    • Ocepeka, U.1    Rugeljb, J.2    Bosnica, Z.3
  • 14
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • Salakhutdinov, R., Mnih, A., Probabilistic matrix factorization. NIPS, vol. 20, 2007, 1–8.
    • (2007) NIPS , vol.vol. 20 , pp. 1-8
    • Salakhutdinov, R.1    Mnih, A.2
  • 19
    • 84905861914 scopus 로고    scopus 로고
    • Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges
    • Shi, Y., Larson, M., Hanjalic, A., Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. ACM Computing Surveys (CSUR), 47(1), 2014, 3.
    • (2014) ACM Computing Surveys (CSUR) , vol.47 , Issue.1 , pp. 3
    • Shi, Y.1    Larson, M.2    Hanjalic, A.3
  • 21
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research 11 (2010), 3371–3408.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 24
    • 84962308041 scopus 로고    scopus 로고
    • Time-ordered collaborative filtering for news recommendation
    • Xiao, Y., Ai, P., Hsu, C.H., Wang, H., Jiao, X., Time-ordered collaborative filtering for news recommendation. China Communications 12:12 (2015), 53–62.
    • (2015) China Communications , vol.12 , Issue.12 , pp. 53-62
    • Xiao, Y.1    Ai, P.2    Hsu, C.H.3    Wang, H.4    Jiao, X.5
  • 25
    • 80052121737 scopus 로고    scopus 로고
    • Temporal collaborative filtering with bayesian probabilistic tensor factorization
    • Xiong, L., Chen, X., Huang, T.K., Schneider, J.G., Carbonell, J.G., Temporal collaborative filtering with bayesian probabilistic tensor factorization. SDM, vol. 10, 2010, 211–222.
    • (2010) SDM , vol.vol. 10 , pp. 211-222
    • Xiong, L.1    Chen, X.2    Huang, T.K.3    Schneider, J.G.4    Carbonell, J.G.5
  • 26
    • 84958226092 scopus 로고    scopus 로고
    • Latent factor transition for dynamic collaborative filtering
    • Zhang, C., Wang, K., Yu, H., Sun, J., Lim, E.P., Latent factor transition for dynamic collaborative filtering. SDM, 2014, 452–460.
    • (2014) SDM , pp. 452-460
    • Zhang, C.1    Wang, K.2    Yu, H.3    Sun, J.4    Lim, E.P.5
  • 28
    • 78751646378 scopus 로고    scopus 로고
    • Solving the cold-start problem in recommender systems with social tags
    • Zhang, Z.K., Liu, C., Zhang, Y.C., Zhou, T., Solving the cold-start problem in recommender systems with social tags. EPL (Europhysics Letters), 92(2), 2010, 28002.
    • (2010) EPL (Europhysics Letters) , vol.92 , Issue.2 , pp. 28002
    • Zhang, Z.K.1    Liu, C.2    Zhang, Y.C.3    Zhou, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.