메뉴 건너뛰기




Volumn 2, Issue 2, 2014, Pages 239-250

Cold-start recommendation using Bi-clustering and fusion for large-scale social recommender systems

Author keywords

Biclustering; Collaborative Filtering; Fusion; Keywords Cold start Problem; Smoothing

Indexed keywords

FUSION REACTIONS; RECOMMENDER SYSTEMS; SOCIAL NETWORKING (ONLINE);

EID: 84926519272     PISSN: None     EISSN: 21686750     Source Type: Journal    
DOI: 10.1109/TETC.2013.2283233     Document Type: Article
Times cited : (128)

References (36)
  • 1
    • 84961744092 scopus 로고    scopus 로고
    • Vita: A crowdsensing-oriented mobile cyber physical system
    • Jun.
    • X. Hu, T. H. S. Chu, H. C. B. Chan, and V. C. M. Leung, "Vita: A crowdsensing-oriented mobile cyber physical system," IEEE Trans. Emerg. Topics Comput., vol. 1, no. 1, pp. 148-165, Jun. 2013.
    • (2013) IEEE Trans. Emerg. Topics Comput , vol.1 , Issue.1 , pp. 148-165
    • Hu, X.1    Chu, T.H.S.2    Chan, H.C.B.3    Leung, V.C.M.4
  • 3
    • 84930244838 scopus 로고    scopus 로고
    • CRUC: Cold-start recommendations using collaborative filtering in internet of things
    • Dec.
    • D. Zhang, Q. Zou, and H. Xiong, "CRUC: Cold-start recommendations using collaborative filtering in internet of things," Energy Proc., vol. 13, pp. 3454-3461, Dec. 2011.
    • (2011) Energy Proc. , vol.13 , pp. 3454-3461
    • Zhang, D.1    Zou, Q.2    Xiong, H.3
  • 6
    • 0037252945 scopus 로고    scopus 로고
    • Amazon. Com recommendations: Itemto-item collaborative filtering
    • Jan./Feb.
    • G. Linden, B. Smith, and J. York, "Amazon. com recommendations: Itemto-item collaborative filtering, " IEEE Internet Comput., vol. 7, no. 1, pp. 76-80, Jan./Feb. 2003.
    • (2003) IEEE Internet Comput. , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 7
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram, "Google news personalization: Scalable online collaborative filtering," in Proc. 16th Int. WWW Conf., 2007, pp. 271-280.
    • (2007) Proc. 16th Int. WWW Conf. , pp. 271-280
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 8
    • 77951495272 scopus 로고    scopus 로고
    • An efficient collaborative filtering approach using smoothing and fusing
    • D. Zhang, J. Cao, M. Guo, J. Zhou, and R. Vaskar, "An efficient collaborative filtering approach using smoothing and fusing," in Proc. ICPP, 2009, pp. 147-154.
    • (2009) Proc. ICPP , pp. 147-154
    • Zhang, D.1    Cao, J.2    Guo, M.3    Zhou, J.4    Vaskar, R.5
  • 9
    • 79953906221 scopus 로고    scopus 로고
    • TopRecs: Top-k algorithms for item-based collaborative filtering
    • M. Khabbaz and L. V. S. Lakshmanan, "TopRecs: Top-k algorithms for item-based collaborative filtering," in Proc. EDBT, 2011, pp. 213-224.
    • (2011) Proc. EDBT , pp. 213-224
    • Khabbaz, M.1    Lakshmanan, L.V.S.2
  • 10
    • 82555183093 scopus 로고    scopus 로고
    • Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy
    • N. Koenigstein, G. Dror, and Y. Koren, "Yahoo! music recommendations: Modeling music ratings with temporal dynamics and item taxonomy," in Proc. 5th ACM Conf. RecSys, 2011, pp. 165-172.
    • (2011) Proc. 5th ACM Conf. RecSys , pp. 165-172
    • Koenigstein, N.1    Dror, G.2    Koren, Y.3
  • 12
    • 84860870379 scopus 로고    scopus 로고
    • An exploration of improving collaborative recommender systems via user-item subgroups
    • Apr.
    • B. Xu, J. Bu, C. Chen, and D. Cai, "An exploration of improving collaborative recommender systems via user-item subgroups," in Proc. 21st Int. Conf. WWW, Apr. 2012, pp. 21-30.
    • (2012) Proc. 21st Int. Conf. WWW , pp. 21-30
    • Xu, B.1    Bu, J.2    Chen, C.3    Cai, D.4
  • 14
    • 56749097294 scopus 로고    scopus 로고
    • Whom should i trust?: The impact of key figures on cold start recommendations
    • P. Victor, C. Cornelis, A. Teredesai, and M. De Cock, "Whom should I trust?: The impact of key figures on cold start recommendations," in Proc. ACM Symp. Appl. Comput., 2008, pp. 2014-2018.
    • (2008) Proc. ACM Symp. Appl. Comput. , pp. 2014-2018
    • Victor, P.1    Cornelis, C.2    Teredesai, A.3    De Cock, M.4
  • 15
    • 80052119372 scopus 로고    scopus 로고
    • Functional matrix factorizations for cold-start recommendation
    • K. Zhou, S.-H. Yang, and H. Zha, "Functional matrix factorizations for cold-start recommendation," in Proc. 34th Int. ACM SIGIR, 2011, pp. 315-324.
    • (2011) Proc. 34th Int. ACM SIGIR , pp. 315-324
    • Zhou, K.1    Yang, S.-H.2    Zha, H.3
  • 16
    • 77953988900 scopus 로고    scopus 로고
    • Using linguistic incomplete preference relations to cold start recommendations
    • R M. Rodríguez, M. Espinilla, P. J. Sanchez, and L. M. Lopez, "Using linguistic incomplete preference relations to cold start recommendations," Internet Res., vol. 20, no. 3, pp. 296-315, 2010.
    • (2010) Internet Res. , vol.20 , Issue.3 , pp. 296-315
    • Rodríguez, R.M.1    Espinilla, M.2    Sanchez, P.J.3    Lopez, L.M.4
  • 17
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren, "Factorization meets the neighborhood: A multifaceted collaborative filtering model," in Proc. 14th ACM SIGKDD, 2008, pp. 426-434.
    • (2008) Proc. 14th ACM SIGKDD , pp. 426-434
    • Koren, Y.1
  • 18
    • 34948850364 scopus 로고    scopus 로고
    • A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem
    • H. J. Ahn, "A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem," Inf. Sci., vol. 178, no. 1, pp. 37-51, 2008.
    • (2008) Inf. Sci. , vol.178 , Issue.1 , pp. 37-51
    • Ahn, H.J.1
  • 20
    • 84865622435 scopus 로고    scopus 로고
    • Personalized recommendation on dynamic content using predictive bilinear models
    • W. Chu and S.-T. Park, "Personalized recommendation on dynamic content using predictive bilinear models," in Proc. 18th Int. Conf. WWW, 2009, pp. 691-700.
    • (2009) Proc. 18th Int. Conf. WWW , pp. 691-700
    • Chu, W.1    Park, S.-T.2
  • 21
    • 80052679175 scopus 로고    scopus 로고
    • Response prediction using collaborative filtering with hierarchies and side-information
    • A. K. Menon, K. P. Chitrapura, S. Garg, D. Agarwal, and N. Kota, "Response prediction using collaborative filtering with hierarchies and side-information," in Proc. 17th ACM SIGKDD, 2011, pp. 141-149.
    • (2011) Proc. 17th ACM SIGKDD , pp. 141-149
    • Menon, A.K.1    Chitrapura, K.P.2    Garg, S.3    Agarwal, D.4    Kota, N.5
  • 23
    • 34548591807 scopus 로고    scopus 로고
    • A scalable collaborative filtering framework based on co-clustering
    • Nov.
    • T. George and S. Merugu, "A scalable collaborative filtering framework based on co-clustering," in Proc. 5th IEEE ICDM, Nov. 2005, pp. 625-628.
    • (2005) Proc. 5th IEEE ICDM , pp. 625-628
    • George, T.1    Merugu, S.2
  • 24
    • 36849087435 scopus 로고    scopus 로고
    • A framework for simultaneous co-clustering and learning from complex data
    • M. Deodhar and J. Ghosh, "A framework for simultaneous co-clustering and learning from complex data," in Proc. 13th ACM SIGKDD, 2007, pp. 250-259.
    • (2007) Proc. 13th ACM SIGKDD , pp. 250-259
    • Deodhar, M.1    Ghosh, J.2
  • 25
    • 64549126899 scopus 로고    scopus 로고
    • Collaborative filtering using orthogonal nonnegative matrix tri-factorization
    • G. Chen, F. Wang, and C. Zhang, "Collaborative filtering using orthogonal nonnegative matrix tri-factorization," Inf. Process. Manag., vol. 45, no. 3, pp. 368-379, 2009.
    • (2009) Inf. Process. Manag. , vol.45 , Issue.3 , pp. 368-379
    • Chen, G.1    Wang, F.2    Zhang, C.3
  • 26
    • 80052112678 scopus 로고    scopus 로고
    • CLR: A collaborative location recommendation framework based on co-clustering
    • K. W.-T. Leung, D. L. Lee, and W.-C. Lee, "CLR: A collaborative location recommendation framework based on co-clustering," in Proc. 34th Int. ACM SIGIR Conf., 2011, pp. 305-314.
    • (2011) Proc. 34th Int. ACM SIGIR Conf. , pp. 305-314
    • Leung, K.W.-T.1    Lee, D.L.2    Lee, W.-C.3
  • 28
    • 77954717284 scopus 로고    scopus 로고
    • Personalized DTV program recommendation system under a cloud computing environment
    • May
    • S. Lee, D. Lee, and S. Lee, "Personalized DTV program recommendation system under a cloud computing environment," IEEE Trans. Consumer Electron., vol. 56, no. 2, pp. 1034-1042, May 2010.
    • (2010) IEEE Trans. Consumer Electron. , vol.56 , Issue.2 , pp. 1034-1042
    • Lee, S.1    Lee, D.2    Lee, S.3
  • 29
    • 79953192127 scopus 로고    scopus 로고
    • CPRS: A cloud-based program recommendation system for digital TV platforms
    • C.-F. Lai, J.-H. Chang, C.-C. Hu, Y.-M. Huang, and H.-C. Chao, "CPRS: A cloud-based program recommendation system for digital TV platforms," Future Generat. Comput. Syst., vol. 27, no. 6, pp. 823-835, 2011.
    • (2011) Future Generat. Comput. Syst. , vol.27 , Issue.6 , pp. 823-835
    • Lai, C.-F.1    Chang, J.-H.2    Hu, C.-C.3    Huang, Y.-M.4    Chao, H.-C.5
  • 30
    • 84864194257 scopus 로고    scopus 로고
    • A blog personality recommender system based on cloud computing infrastructure
    • May
    • J. Jiang, W. Pang, Y. Deng, K. He, and Z. Gu, "A blog personality recommender system based on cloud computing infrastructure," in Proc. IJCSS, May 2012, pp. 1-5.
    • (2012) Proc. IJCSS , pp. 1-5
    • Jiang, J.1    Pang, W.2    Deng, Y.3    He, K.4    Gu, Z.5
  • 32
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. T. Reinders, "Unifying user-based and item-based collaborative filtering approaches by similarity fusion," in Proc. SIGIR, 2006, pp. 501-508.
    • (2006) Proc. SIGIR , pp. 501-508
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3
  • 34
    • 36448972659 scopus 로고    scopus 로고
    • Effective missing data prediction for collaborative filtering
    • H. Ma, I. King, and M. R. Lyu, "Effective missing data prediction for collaborative filtering," in Proc. 30th Annu. Int. ACM SIGIR Conf., 2007, pp. 39-46.
    • (2007) Proc. 30th Annu. Int. ACM SIGIR Conf. , pp. 39-46
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 36
    • 80052112678 scopus 로고    scopus 로고
    • CLR: A collaborative location recommendation framework based on co-clustering
    • K. W.-T. Leung, D. L. Lee, and W.-C. Lee, "CLR: A collaborative location recommendation framework based on co-clustering," in Proc. 34th Int. ACM SIGIR Conf., 2011, pp. 305-314.
    • (2011) Proc. 34th Int. ACM SIGIR Conf. , pp. 305-314
    • Leung, K.W.-T.1    Lee, D.L.2    Lee, W.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.