-
1
-
-
85043815731
-
-
For reviews on the generation and use of ammonium enolates, see
-
For reviews on the generation and use of ammonium enolates, see:
-
-
-
-
2
-
-
0041878745
-
-
S. France, D. J. Guerin, S. J. Miller, T. Lectka, Chem. Rev. 2003, 103, 2985–3012;
-
(2003)
Chem. Rev.
, vol.103
, pp. 2985-3012
-
-
France, S.1
Guerin, D.J.2
Miller, S.J.3
Lectka, T.4
-
4
-
-
67650694508
-
-
D. H. Paull, A. Weatherwax, T. Lectka, Tetrahedron 2009, 65, 6771–6803;
-
(2009)
Tetrahedron
, vol.65
, pp. 6771-6803
-
-
Paull, D.H.1
Weatherwax, A.2
Lectka, T.3
-
6
-
-
85043821186
-
-
For seminal examples, see
-
For seminal examples, see:
-
-
-
-
8
-
-
0037067063
-
-
A. E. Taggi, A. M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J. Am. Chem. Soc. 2002, 124, 6626–6635;
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 6626-6635
-
-
Taggi, A.E.1
Hafez, A.M.2
Wack, H.3
Young, B.4
Ferraris, D.5
Lectka, T.6
-
9
-
-
2342504471
-
-
C. Zhu, X. Shen, S. G. Nelson, J. Am. Chem. Soc. 2004, 126, 5352–5353.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 5352-5353
-
-
Zhu, C.1
Shen, X.2
Nelson, S.G.3
-
10
-
-
84890815687
-
-
L. C. Morrill, L. A. Ledingham, J.-P. Couturier, J. Bickel, A. D. Harper, C. Fallan, A. D. Smith, Org. Biomol. Chem. 2014, 12, 624–636.
-
(2014)
Org. Biomol. Chem.
, vol.12
, pp. 624-636
-
-
Morrill, L.C.1
Ledingham, L.A.2
Couturier, J.-P.3
Bickel, J.4
Harper, A.D.5
Fallan, C.6
Smith, A.D.7
-
11
-
-
84897081812
-
-
T. H. West, D. S. B. Daniels, A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2014, 136, 4476–4479;
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4476-4479
-
-
West, T.H.1
Daniels, D.S.B.2
Slawin, A.M.Z.3
Smith, A.D.4
-
12
-
-
84966340531
-
-
K. J. Schwarz, J. L. Amos, J. C. Klein, D. T. Do, T. N. Snaddon, J. Am. Chem. Soc. 2016, 138, 5214–5217.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 5214-5217
-
-
Schwarz, K.J.1
Amos, J.L.2
Klein, J.C.3
Do, D.T.4
Snaddon, T.N.5
-
13
-
-
85043827534
-
-
For seminal examples, see
-
For seminal examples, see:
-
-
-
-
14
-
-
0034808095
-
-
G. S. Cortez, R. L. Tennyson, D. Romo, J. Am. Chem. Soc. 2001, 123, 7945–7946;
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 7945-7946
-
-
Cortez, G.S.1
Tennyson, R.L.2
Romo, D.3
-
15
-
-
17044369204
-
-
S. H. Oh, G. S. Cortez, D. Romo, J. Org. Chem. 2005, 70, 2835–2838;
-
(2005)
J. Org. Chem.
, vol.70
, pp. 2835-2838
-
-
Oh, S.H.1
Cortez, G.S.2
Romo, D.3
-
16
-
-
33749027460
-
-
H. Henry-Riyad, C. Lee, V. C. Purohit, D. Romo, Org. Lett. 2006, 8, 4363–4366;
-
(2006)
Org. Lett.
, vol.8
, pp. 4363-4366
-
-
Henry-Riyad, H.1
Lee, C.2
Purohit, V.C.3
Romo, D.4
-
17
-
-
78650078134
-
-
C. A. Leverett, V. C. Purohit, D. Romo, Angew. Chem. Int. Ed. 2010, 49, 9479–9483;
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 9479-9483
-
-
Leverett, C.A.1
Purohit, V.C.2
Romo, D.3
-
18
-
-
79961238614
-
-
Angew. Chem. 2010, 122, 9669–9673;
-
(2010)
Angew. Chem.
, vol.122
, pp. 9669-9673
-
-
-
19
-
-
79952269315
-
-
D. Belmessieri, L. C. Morrill, C. Simal, A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2011, 133, 2714–2720.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 2714-2720
-
-
Belmessieri, D.1
Morrill, L.C.2
Simal, C.3
Slawin, A.M.Z.4
Smith, A.D.5
-
20
-
-
85043797699
-
-
For seminal work, see
-
For seminal work, see:
-
-
-
-
22
-
-
0001034164
-
-
W. P. Jencks, D. G. Oakenfull, K. Salvesen, J. Am. Chem. Soc. 1971, 93, 188–194.
-
(1971)
J. Am. Chem. Soc.
, vol.93
, pp. 188-194
-
-
Jencks, W.P.1
Oakenfull, D.G.2
Salvesen, K.3
-
23
-
-
20544462132
-
-
J. A. Grzyb, M. Shen, C. Yoshina-Ishii, W. Chi, R. S. Brown, R. A. Batey, Tetrahedron 2005, 61, 7153–7175.
-
(2005)
Tetrahedron
, vol.61
, pp. 7153-7175
-
-
Grzyb, J.A.1
Shen, M.2
Yoshina-Ishii, C.3
Chi, W.4
Brown, R.S.5
Batey, R.A.6
-
24
-
-
61449179322
-
-
E. K. Woodman, J. G. K. Chaffey, P. A. Hopes, D. R. J. Hose, J. P. Gilday, Org. Process Res. Dev. 2009, 13, 106–113.
-
(2009)
Org. Process Res. Dev.
, vol.13
, pp. 106-113
-
-
Woodman, E.K.1
Chaffey, J.G.K.2
Hopes, P.A.3
Hose, D.R.J.4
Gilday, J.P.5
-
25
-
-
84860207609
-
-
S. T. Heller, T. Fu, R. Sarpong, Org. Lett. 2012, 14, 1970–1973.
-
(2012)
Org. Lett.
, vol.14
, pp. 1970-1973
-
-
Heller, S.T.1
Fu, T.2
Sarpong, R.3
-
26
-
-
85043810795
-
-
DMAP salts effectively catalyse acylations via N-acyl ammonium intermediate formation under base-free conditions, see
-
DMAP salts effectively catalyse acylations via N-acyl ammonium intermediate formation under base-free conditions, see:
-
-
-
-
27
-
-
36749050839
-
-
A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, J. Am. Chem. Soc. 2007, 129, 14775–14779;
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14775-14779
-
-
Sakakura, A.1
Kawajiri, K.2
Ohkubo, T.3
Kosugi, Y.4
Ishihara, K.5
-
28
-
-
75749090354
-
-
D. Vuluga, J. Legros, B. Crousse, D. Bonnet-Delpon, Chem. Eur. J. 2010, 16, 1776–1779;
-
(2010)
Chem. Eur. J.
, vol.16
, pp. 1776-1779
-
-
Vuluga, D.1
Legros, J.2
Crousse, B.3
Bonnet-Delpon, D.4
-
29
-
-
84891771198
-
-
Z. Liu, Q. Ma, Y. Liu, Q. Wang, Org. Lett. 2014, 16, 236–239.
-
(2014)
Org. Lett.
, vol.16
, pp. 236-239
-
-
Liu, Z.1
Ma, Q.2
Liu, Y.3
Wang, Q.4
-
30
-
-
84905259527
-
-
A. Lee, A. Younai, C. K. Price, J. Izquierdo, R. K. Mishra, K. A. Scheidt, J. Am. Chem. Soc. 2014, 136, 10589–10592;
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 10589-10592
-
-
Lee, A.1
Younai, A.2
Price, C.K.3
Izquierdo, J.4
Mishra, R.K.5
Scheidt, K.A.6
-
32
-
-
84941924116
-
-
Enders has reported the use of α,β-unsaturated, N, -acyltriazoles as α,β-unsaturated acyl azolium precursors for annulations with 1,3-dicarbonyls under basic conditions, see
-
Enders has reported the use of α,β-unsaturated N-acyltriazoles as α,β-unsaturated acyl azolium precursors for annulations with 1,3-dicarbonyls under basic conditions, see: Q. Ni, J. Xiong, X. Song, G. Raabe, D. Enders, Chem. Commun. 2015, 51, 14628–14631.
-
(2015)
Chem. Commun.
, vol.51
, pp. 14628-14631
-
-
Ni, Q.1
Xiong, J.2
Song, X.3
Raabe, G.4
Enders, D.5
-
33
-
-
85043801313
-
-
For reviews on isothioureas as Lewis base catalysts, see
-
For reviews on isothioureas as Lewis base catalysts, see:
-
-
-
-
34
-
-
84863229390
-
-
J. E. Taylor, S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109–2121;
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2109-2121
-
-
Taylor, J.E.1
Bull, S.D.2
Williams, J.M.J.3
-
37
-
-
84885044254
-
-
For the corresponding reaction under basic conditions starting from arylacetic acids, see
-
For the corresponding reaction under basic conditions starting from arylacetic acids, see: L. C. Morrill, J. Douglas, T. Lebl, A. M. Z. Slawin, D. J. Fox, A. D. Smith, Chem. Sci. 2013, 4, 4146–4155.
-
(2013)
Chem. Sci.
, vol.4
, pp. 4146-4155
-
-
Morrill, L.C.1
Douglas, J.2
Lebl, T.3
Slawin, A.M.Z.4
Fox, D.J.5
Smith, A.D.6
-
38
-
-
85051900289
-
-
A control experiment in the absence of tetramisole⋅HCl 3 led to the formation of (±)-4 in 28 % yield, suggesting a base-promoted background process is responsible for the observed reactivity
-
A control experiment in the absence of tetramisole⋅HCl 3 led to the formation of (±)-4 in 28 % yield, suggesting a base-promoted background process is responsible for the observed reactivity.
-
-
-
-
39
-
-
85043811367
-
-
The absolute and relative configuration of the product was confirmed by comparison of its specific rotation and spectral data with the literature, Ref. [14].
-
The absolute and relative configuration of the product was confirmed by comparison of its specific rotation and spectral data with the literature, Ref. [14].
-
-
-
-
40
-
-
85043824805
-
-
For a complete reaction optimization table, see the Supporting Information.
-
For a complete reaction optimization table, see the Supporting Information.
-
-
-
-
41
-
-
84922675627
-
-
The absolute and relative configuration of the product was confirmed by comparison of its specific rotation and spectral data with the literature
-
The absolute and relative configuration of the product was confirmed by comparison of its specific rotation and spectral data with the literature: P.-P. Yeh, D. S. B. Daniels, C. Fallan, E. Gould, C. Simal, J. E. Taylor, A. M. Z. Slawin, A. D. Smith, Org. Biomol. Chem. 2015, 13, 2177–2191.
-
(2015)
Org. Biomol. Chem.
, vol.13
, pp. 2177-2191
-
-
Yeh, P.-P.1
Daniels, D.S.B.2
Fallan, C.3
Gould, E.4
Simal, C.5
Taylor, J.E.6
Slawin, A.M.Z.7
Smith, A.D.8
-
42
-
-
85043822484
-
-
The absolute and relative configuration of the product were assigned by analogy to the other series reported.
-
The absolute and relative configuration of the product were assigned by analogy to the other series reported.
-
-
-
-
43
-
-
85043816379
-
-
The same equilibrium position was obtained starting from a mixture of N-acyl ammonium 32, obtained from the reaction of (+)-BTM 5 with phenacyl chlorideimidazole 33.
-
The same equilibrium position was obtained starting from a mixture of N-acyl ammonium 32, obtained from the reaction of (+)-BTM 5 with phenacyl chloride, and imidazole 33.
-
-
-
-
44
-
-
85043821625
-
-
See the Supporting Information for more details.
-
See the Supporting Information for more details.
-
-
-
-
45
-
-
85043796419
-
-
The observed cross-over may occur via an intermediate N,N′-diacyl imidazolium species, although no direct evidence for this could be obtained. Alternatively, the in situ formation of a ketene intermediate is another possible pathway
-
The observed cross-over may occur via an intermediate N,N′-diacyl imidazolium species, although no direct evidence for this could be obtained. Alternatively, the in situ formation of a ketene intermediate is another possible pathway.
-
-
-
-
46
-
-
85043826506
-
-
For reviews on this technique, see
-
For reviews on this technique, see:
-
-
-
-
48
-
-
33746248151
-
-
Angew. Chem. 2005, 117, 4374–4393;
-
(2005)
Angew. Chem.
, vol.117
, pp. 4374-4393
-
-
-
50
-
-
85043831856
-
-
this gave product 11 in 70 % NMR yield, 86:14 d.r. and 81:19 e.r
-
Synthetically, this gave product 11 in 70 % NMR yield, 86:14 d.r. and 81:19 e.r.
-
Synthetically
-
-
-
52
-
-
84993510872
-
-
Angew. Chem. 2016, 128, 2068–2071.
-
(2016)
Angew. Chem.
, vol.128
, pp. 2068-2071
-
-
-
53
-
-
85043814540
-
-
See the Supporting Information for full reaction profiles and analysis.
-
See the Supporting Information for full reaction profiles and analysis.
-
-
-
-
54
-
-
85043814775
-
-
The same order in catalyst could also be obtained by initial rate analysis. See the Supporting Information for more details.
-
The same order in catalyst could also be obtained by initial rate analysis. See the Supporting Information for more details.
-
-
-
-
55
-
-
85043806748
-
-
The remaining minor discrepancy between the time-adjusted same-excess profile containing imidazole 33 and the original data may be due to either experimental error or minimal catalyst deactivation.
-
The remaining minor discrepancy between the time-adjusted same-excess profile containing imidazole 33 and the original data may be due to either experimental error or minimal catalyst deactivation.
-
-
-
-
56
-
-
85043802781
-
-
For other examples of complex reaction kinetics due at least in part to no definitive catalyst resting state, see
-
For other examples of complex reaction kinetics due at least in part to no definitive catalyst resting state, see:
-
-
-
-
57
-
-
84866422576
-
-
S. Y. Lee, J. M. Murphy, A. Ukai, G. C. Fu, J. Am. Chem. Soc. 2012, 134, 15149–15153;
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15149-15153
-
-
Lee, S.Y.1
Murphy, J.M.2
Ukai, A.3
Fu, G.C.4
-
59
-
-
33846405667
-
-
V. B. Birman, X. Li, Z. Han, Org. Lett. 2007, 9, 37–40;
-
(2007)
Org. Lett.
, vol.9
, pp. 37-40
-
-
Birman, V.B.1
Li, X.2
Han, Z.3
-
60
-
-
84863624104
-
-
P. Liu, X. Yang, V. B. Birman, K. N. Houk, Org. Lett. 2012, 14, 3288–3291.
-
(2012)
Org. Lett.
, vol.14
, pp. 3288-3291
-
-
Liu, P.1
Yang, X.2
Birman, V.B.3
Houk, K.N.4
-
61
-
-
84993562283
-
-
The research data underpinning this publication can be found at DOI: http://dx.doi.org/10.17630/346a5fe8-a636-46e8-9933-71db82f0083a.
-
-
-
|