메뉴 건너뛰기




Volumn 28, Issue 2, 2017, Pages 237-248

Variable Selection for Confounding Adjustment in High-dimensional Covariate Spaces When Analyzing Healthcare Databases

Author keywords

[No Author keywords available]

Indexed keywords

PRESCRIPTION DRUG;

EID: 84992363430     PISSN: 10443983     EISSN: 15315487     Source Type: Journal    
DOI: 10.1097/EDE.0000000000000581     Document Type: Article
Times cited : (51)

References (40)
  • 3
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373-1379.
    • (1996) J Clin Epidemiol. , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 4
    • 0026708512 scopus 로고
    • Estimating exposure effects by modelling the expectation of exposure conditional on confounders
    • R obins JM, Mark SD, Newey WK. Estimating exposure effects by modelling the expectation of exposure conditional on confounders. Biometrics. 1992;48:479-495.
    • (1992) Biometrics. , vol.48 , pp. 479-495
    • Obins J M, R.1    Mark, S.D.2    Newey, W.K.3
  • 5
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • C epeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158:280-287.
    • (2003) Am J Epidemiol. , vol.158 , pp. 280-287
    • Epeda M S, C.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 7
    • 80053281276 scopus 로고    scopus 로고
    • Effects of adjusting for instrumental variables on bias and precision of effect estimates
    • Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol. 2011;174:1213-1222.
    • (2011) Am J Epidemiol. , vol.174 , pp. 1213-1222
    • Myers, J.A.1    Rassen, J.A.2    Gagne, J.J.3
  • 8
    • 33646802964 scopus 로고    scopus 로고
    • Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable
    • Brookhart MA, Wang PS, Solomon DH, Schneeweiss S. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology. 2006;17:268-275.
    • (2006) Epidemiology. , vol.17 , pp. 268-275
    • Brookhart, M.A.1    Wang, P.S.2    Solomon, D.H.3    Schneeweiss, S.4
  • 9
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20:512-522.
    • (2009) Epidemiology. , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 10
    • 77951824710 scopus 로고    scopus 로고
    • Comparative safety of antidepressant agents for children and adolescents regarding suicidal acts
    • Schneeweiss S, Patrick AR, Solomon DH, et al. Comparative safety of antidepressant agents for children and adolescents regarding suicidal acts. Pediatrics. 2010;125:876-888.
    • (2010) Pediatrics. , vol.125 , pp. 876-888
    • Schneeweiss, S.1    Patrick, A.R.2    Solomon, D.H.3
  • 11
    • 77950903719 scopus 로고    scopus 로고
    • Anticonvulsant medications and the risk of suicide, attempted suicide, or violent death
    • Patorno E, Bohn RL, Wahl PM, et al. Anticonvulsant medications and the risk of suicide, attempted suicide, or violent death. JAMA. 2010;303:1401-1409.
    • (2010) JAMA , vol.303 , pp. 1401-1409
    • Patorno, E.1    Bohn, R.L.2    Wahl, P.M.3
  • 12
    • 84894153340 scopus 로고    scopus 로고
    • Studies with many covariates and few outcomes: Selecting covariates and implementing propensity-score-based confounding adjustments
    • Patorno E, Glynn RJ, Hernández-Díaz S, Liu J, Schneeweiss S. Studies with many covariates and few outcomes: selecting covariates and implementing propensity-score-based confounding adjustments. Epidemiology. 2014;25:268-278.
    • (2014) Epidemiology. , vol.25 , pp. 268-278
    • Patorno, E.1    Glynn, R.J.2    Hernández-Díaz, S.3    Liu, J.4    Schneeweiss, S.5
  • 13
    • 84856034091 scopus 로고    scopus 로고
    • Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system
    • R assen JA, Schneeweiss S. Using high-dimensional propensity scores to automate confounding control in a distributed medical product safety surveillance system. Pharmacoepidemiol Drug Saf. 2012;21(suppl 1):41-49.
    • (2012) Pharmacoepidemiol Drug Saf. , vol.21 , pp. 41-49
    • Assen J A, R.1    Schneeweiss, S.2
  • 14
    • 84940960686 scopus 로고    scopus 로고
    • On the role of marginal confounder prevalence-implications for the high-dimensional propensity score algorithm
    • Schuster T, Pang M, Platt RW. On the role of marginal confounder prevalence-implications for the high-dimensional propensity score algorithm. Pharmacoepidemiol Drug Saf. 2015;24:1004-1007.
    • (2015) Pharmacoepidemiol Drug Saf. , vol.24 , pp. 1004-1007
    • Schuster, T.1    Pang, M.2    Platt, R.W.3
  • 15
    • 0013916535 scopus 로고
    • Spurious effects from an extraneous variable
    • Bross ID. Spurious effects from an extraneous variable. J Chronic Dis. 1966;19:637-647.
    • (1966) J Chronic Dis. , vol.19 , pp. 637-647
    • Bross, I.D.1
  • 16
    • 77957301897 scopus 로고    scopus 로고
    • Treatment effects in the presence of unmeasured confounding: Dealing with observations in the tails of the propensity score distribution-a simulation study
    • Stürmer T, Rothman KJ, Avorn J, Glynn RJ. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution-a simulation study. Am J Epidemiol. 2010;172:843-854.
    • (2010) Am J Epidemiol. , vol.172 , pp. 843-854
    • Stürmer, T.1    Rothman, K.J.2    Avorn, J.3    Glynn, R.J.4
  • 18
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1-22.
    • (2010) J Stat Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • G elman A, Jakulin A, Pittau M, Su Y. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008:1360-1383.
    • (2008) Ann Appl Stat. , pp. 1360-1383
    • Elman A, G.1    Jakulin, A.2    Pittau, M.3    Su, Y.4
  • 24
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • L iaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2:18-22.
    • (2002) R News. , vol.2 , pp. 18-22
    • Iaw A, L.1    Wiener, M.2
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 27
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59:437-447.
    • (2006) J Clin Epidemiol. , vol.59 , pp. 437-447
    • Stürmer, T.1    Joshi, M.2    Glynn, R.J.3    Avorn, J.4    Rothman, K.J.5    Schneeweiss, S.6
  • 29
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2004;2:E108.
    • (2004) PLoS Biol. , vol.2 , pp. E108
    • Bair, E.1    Tibshirani, R.2
  • 30
    • 84885833101 scopus 로고    scopus 로고
    • Ridge regression in prediction problems: Automatic choice of the ridge parameter
    • C ule E, De Iorio M. Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet Epidemiol 2013;37:704-714.
    • (2013) Genet Epidemiol , vol.37 , pp. 704-714
    • Cule, E.1    De Iorio, M.2
  • 32
    • 0015120807 scopus 로고
    • Clinical biostatistics.XI. Sources of 'chronology bias' in cohort statistics
    • Feinstein AR. Clinical biostatistics. XI. Sources of 'chronology bias' in cohort statistics. Clin Pharmacol Ther. 1971;12:864-879.
    • (1971) Clin Pharmacol Ther. , vol.12 , pp. 864-879
    • Feinstein, A.R.1
  • 33
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: Variable selection versus shrinkage in the control of multiple confounders
    • discussion 530-521
    • Greenland S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol. 2008;167:523-529; discussion 530-521.
    • (2008) Am J Epidemiol. , vol.167 , pp. 523-529
    • Greenland, S.1
  • 34
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: A practical guide and simulated example
    • Schafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychol Methods. 2008;13:279-313.
    • (2008) Psychol Methods. , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 35
    • 79953903665 scopus 로고    scopus 로고
    • On model selection and model misspecification in causal inference
    • Vansteelandt S, Bekaert M, Claeskens G. On model selection and model misspecification in causal inference. Stat Methods Med Res. 2012;21:7-30.
    • (2012) Stat Methods Med Res. , vol.21 , pp. 7-30
    • Vansteelandt, S.1    Bekaert, M.2    Claeskens, G.3
  • 36
    • 84890553945 scopus 로고    scopus 로고
    • Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases
    • Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Comput Stat Data Anal. 2014;72:219-226.
    • (2014) Comput Stat Data Anal. , vol.72 , pp. 219-226
    • Franklin, J.M.1    Schneeweiss, S.2    Polinski, J.M.3    Rassen, J.A.4
  • 37
    • 84943555084 scopus 로고    scopus 로고
    • Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses
    • Franklin JM, Eddings W, Glynn RJ, Schneeweiss S. Regularized regression versus the high-dimensional propensity score for confounding adjustment in secondary database analyses. Am J Epidemiol. 2015;182:651-659.
    • (2015) Am J Epidemiol. , vol.182 , pp. 651-659
    • Franklin, J.M.1    Eddings, W.2    Glynn, R.J.3    Schneeweiss, S.4
  • 39
    • 77953150321 scopus 로고    scopus 로고
    • Collaborative double robust targeted maximum likelihood estimation
    • van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. Int J Biostat. 2010;6:article 17.
    • (2010) Int J Biostat. , vol.6
    • Van Der Laan, M.J.1    Gruber, S.2
  • 40
    • 82055199021 scopus 로고    scopus 로고
    • Covariate selection for the nonparametric estimation of an average treatment effect
    • De Luna XD, Waernbaum I, Richardson TS. Covariate selection for the nonparametric estimation of an average treatment effect Biometrika. 2011;98:861-875.
    • (2011) Biometrika , vol.98 , pp. 861-875
    • De Luna, X.D.1    Waernbaum, I.2    Richardson, T.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.