-
5
-
-
27144474202
-
Oxy-fuel combustion technology for coal-fired power generation
-
Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF,. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005; 31: 283-307.
-
(2005)
Prog. Energy Combust. Sci.
, vol.31
, pp. 283-307
-
-
Buhre, B.J.P.1
Elliott, L.K.2
Sheng, C.D.3
Gupta, R.P.4
Wall, T.F.5
-
6
-
-
27744607787
-
Combustion characteristics of coal in a mixture of oxygen and recycled flue gas
-
Tan Y, Croiset E, Douglas MA, Thambimuthu KV,. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel 2006; 85: 507-512.
-
(2006)
Fuel
, vol.85
, pp. 507-512
-
-
Tan, Y.1
Croiset, E.2
Douglas, M.A.3
Thambimuthu, K.V.4
-
7
-
-
0036771677
-
Thermodynamic comparison of fuel cells to the Carnot cycle
-
Lutz AE, Larson RS, Keller JO,. Thermodynamic comparison of fuel cells to the Carnot cycle. Int. J. Hydrogen Energy 2002; 27: 1103-1111.
-
(2002)
Int. J. Hydrogen Energy
, vol.27
, pp. 1103-1111
-
-
Lutz, A.E.1
Larson, R.S.2
Keller, J.O.3
-
8
-
-
0141549491
-
Fuel cell systems: Efficient, flexible energy conversion for the 21st century
-
Ellis MW, Spakovsky MRV, Nelson DJ,. Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE 2001; 89: 1808-1818.
-
(2001)
Proc. IEEE
, vol.89
, pp. 1808-1818
-
-
Ellis, M.W.1
Spakovsky, M.R.V.2
Nelson, D.J.3
-
9
-
-
36749050496
-
Biodiesel as an alternative motor fuel: Production and policies in the European Union
-
Bozbas K,. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable and Sustainable Energy Rev. 2008; 12: 542-552.
-
(2008)
Renewable and Sustainable Energy Rev.
, vol.12
, pp. 542-552
-
-
Bozbas, K.1
-
10
-
-
58749096712
-
Bio-diesel as an alternative fuel for diesel engines - A review
-
Murugesan A, Umarani C, Subramanian R, Nedunchezhian N,. Bio-diesel as an alternative fuel for diesel engines-a review. Renewable Sustainable Energy Rev. 2009; 13: 653-662.
-
(2009)
Renewable Sustainable Energy Rev.
, vol.13
, pp. 653-662
-
-
Murugesan, A.1
Umarani, C.2
Subramanian, R.3
Nedunchezhian, N.4
-
11
-
-
0034744414
-
A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles
-
Brown LF,. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int. J. Hydrogen Energy 2001; 26: 381-397.
-
(2001)
Int. J. Hydrogen Energy
, vol.26
, pp. 381-397
-
-
Brown, L.F.1
-
12
-
-
0034744415
-
Hydrogen from hydrocarbon fuels for fuel cells
-
Ahmed S, Krumpelt M,. Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrogen Energy 2001; 26: 291-301.
-
(2001)
Int. J. Hydrogen Energy
, vol.26
, pp. 291-301
-
-
Ahmed, S.1
Krumpelt, M.2
-
13
-
-
76849102552
-
Recent progress in alkaline water electrolysis for hydrogen production and applications
-
Zeng K, Zhang D,. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010; 36: 307-326.
-
(2010)
Prog. Energy Combust. Sci.
, vol.36
, pp. 307-326
-
-
Zeng, K.1
Zhang, D.2
-
14
-
-
84255199761
-
-
Power Electronics Conference (COBEP), Brazilian
-
de Brito MAG, Sampaio LP, Junior LG, Canesin CA,. Research on photovoltaics: review, trends and perspectives. Power Electronics Conference (COBEP), Brazilian, 2011; 531-537.
-
(2011)
Research on Photovoltaics: Review, Trends and Perspectives
, pp. 531-537
-
-
De Brito, M.A.G.1
Sampaio, L.P.2
Junior, L.G.3
Canesin, C.A.4
-
16
-
-
84888357540
-
Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance
-
Chen X, Zhao B, Cai Y, Tade MO, Shao Z,. Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale 2013; 5: 12589-12597.
-
(2013)
Nanoscale
, vol.5
, pp. 12589-12597
-
-
Chen, X.1
Zhao, B.2
Cai, Y.3
Tade, M.O.4
Shao, Z.5
-
17
-
-
85001220789
-
Synthesis gas production in oxy-carbon dioxide reforming of methane over perovskite catalysts
-
Milka G, Sanjay SP,. Synthesis gas production in oxy-carbon dioxide reforming of methane over perovskite catalysts. Instit. Technol. Nirma University, Ahmedabad 2011; 382: 1-5.
-
(2011)
Instit. Technol. Nirma University, Ahmedabad
, vol.382
, pp. 1-5
-
-
Milka, G.1
Sanjay, S.P.2
-
18
-
-
0026865510
-
Rational selection of advanced solid electrolytes for intermediate temperature fuel cells
-
Sammells AF, Cook RL, White JH, Osborne JJ, MacDuff RC,. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ion. 1992; 52: 111-123.
-
(1992)
Solid State Ion.
, vol.52
, pp. 111-123
-
-
Sammells, A.F.1
Cook, R.L.2
White, J.H.3
Osborne, J.J.4
MacDuff, R.C.5
-
19
-
-
84924258458
-
Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells
-
Sengodan S, Choi S, Jun A, Shin TH, Ju Y-W, Jeong HY, Shin J, Irvine JTS, Kim G,. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 2015; 14: 205-209.
-
(2015)
Nat. Mater.
, vol.14
, pp. 205-209
-
-
Sengodan, S.1
Choi, S.2
Jun, A.3
Shin, T.H.4
Ju, Y.-W.5
Jeong, H.Y.6
Shin, J.7
Irvine, J.T.S.8
Kim, G.9
-
20
-
-
84997170349
-
3OCl superionic conductor films for solid-state Li-ion batteries
-
1500359
-
3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 2016; 3: 1500359.
-
(2016)
Adv. Sci.
, vol.3
-
-
Lü, X.1
Howard, J.W.2
Chen, A.3
-
21
-
-
84954287188
-
3 ferroelectrics by transition elements doping
-
3 ferroelectrics by transition elements doping. Ceram. Int. 2016; 42: 6033-6038.
-
(2016)
Ceram. Int.
, vol.42
, pp. 6033-6038
-
-
Zheng, T.1
Deng, H.2
Zhou, W.3
Zhai, X.4
Cao, H.5
Yu, L.6
Yang, P.7
Chu, J.8
-
23
-
-
0000698468
-
Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films
-
Shi C, Meidong L, Churong L, Yike Z, Da Costa J,. Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films. Thin Solid Films 2000; 375: 288-291.
-
(2000)
Thin Solid Films
, vol.375
, pp. 288-291
-
-
Shi, C.1
Meidong, L.2
Churong, L.3
Yike, Z.4
Da Costa, J.5
-
24
-
-
0034262414
-
Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials
-
Yohachi Y, Yasuharu H, Kouichi H, Noboru I,. Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials. Jpn. J. Appl. Phys. 2000; 39: 5593.
-
(2000)
Jpn. J. Appl. Phys.
, vol.39
, pp. 5593
-
-
Yohachi, Y.1
Yasuharu, H.2
Kouichi, H.3
Noboru, I.4
-
25
-
-
0001170846
-
6
-
6. Solid State Commun. 1999; 110: 435-438.
-
(1999)
Solid State Commun.
, vol.110
, pp. 435-438
-
-
Drawings light down, G.1
Leftá-Landa, B.2
Ritter, C.3
Ibarra, M.R.4
Blasco, J.5
Algarabel, P.A.6
Mahendiran, R.7
Drawings light down, G.8
Leftá, J.9
-
26
-
-
0011705378
-
3 perovskite: Catalytic and electrocatalytic results
-
3 perovskite: catalytic and electrocatalytic results. Appl. Catal., A 1998; 169: 249-261.
-
(1998)
Appl. Catal., A
, vol.169
, pp. 249-261
-
-
Tsiakaras, P.1
Athanasiou, C.2
Marnellos, G.3
Stoukides, M.4
Ten Elshof, J.E.5
Bouwmeester, H.J.M.6
-
27
-
-
84926506145
-
Anomalously large interface charge in polarity-switchable photovoltaic devices: An indication of mobile ions in organic-inorganic halide perovskites
-
Zhao Y, Liang C, Zhang H, Li D, Tian D, Li G, Jing X, Zhang W, Xiao W, Liu Q, Zhang F, He Z,. Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 2015; 8: 1256-1260.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1256-1260
-
-
Zhao, Y.1
Liang, C.2
Zhang, H.3
Li, D.4
Tian, D.5
Li, G.6
Jing, X.7
Zhang, W.8
Xiao, W.9
Liu, Q.10
Zhang, F.11
He, Z.12
-
29
-
-
84954375695
-
Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °c determined by electrical conductivity relaxation
-
Niedrig C, Wagner SF, Menesklou W, Baumann S, Ivers-Tiffée E,. Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °C determined by electrical conductivity relaxation. Solid State Ion. 2015; 283: 30-37.
-
(2015)
Solid State Ion.
, vol.283
, pp. 30-37
-
-
Niedrig, C.1
Wagner, S.F.2
Menesklou, W.3
Baumann, S.4
Ivers-Tiffée, E.5
-
30
-
-
84876541138
-
3 - δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method
-
3-δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method. J. Mater. Chem. A 2013; 1: 4871-4878.
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 4871-4878
-
-
Chen, X.1
Jiang, S.P.2
-
31
-
-
49049104566
-
Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation
-
Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC,. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008; 320: 13-41.
-
(2008)
J. Membr. Sci.
, vol.320
, pp. 13-41
-
-
Sunarso, J.1
Baumann, S.2
Serra, J.M.3
Meulenberg, W.A.4
Liu, S.5
Lin, Y.S.6
Diniz Da Costa, J.C.7
-
35
-
-
84870571601
-
Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells
-
Dong H, Yu H, Wang X, Zhou Q, Sun J,. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. J. Chem. Technol. Biotechnol. 2013; 88: 774-778.
-
(2013)
J. Chem. Technol. Biotechnol.
, vol.88
, pp. 774-778
-
-
Dong, H.1
Yu, H.2
Wang, X.3
Zhou, Q.4
Sun, J.5
-
36
-
-
84865209364
-
3 - δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries
-
3-δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. J. Mater. Chem. 2012; 22: 18902-18907.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 18902-18907
-
-
Yang, W.1
Salim, J.2
Li, S.3
Li, S.4
Sun, C.5
Chen, L.6
Goodenough, J.B.7
Kim, Y.8
-
37
-
-
84925443129
-
Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu
-
Cao Y, Lin B, Sun Y, Yang H, Zhang X,. Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. J. Alloys Compd. 2015; 638: 204-213.
-
(2015)
J. Alloys Compd.
, vol.638
, pp. 204-213
-
-
Cao, Y.1
Lin, B.2
Sun, Y.3
Yang, H.4
Zhang, X.5
-
38
-
-
84948139253
-
3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties
-
3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 2015; 27: 7662-7672.
-
(2015)
Chem. Mater.
, vol.27
, pp. 7662-7672
-
-
Cheng, X.1
Fabbri, E.2
Nachtegaal, M.3
Castelli, I.E.4
Kazzi, M.E.5
Haumont, R.6
Marzari, N.7
Schmidt, T.J.8
-
39
-
-
27144474202
-
Oxy-fuel combustion technology for coal-fired power generation
-
Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF,. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energy Combust. Sci. 2005; 31: 283-307.
-
(2005)
Prog. Energy Combust. Sci.
, vol.31
, pp. 283-307
-
-
Buhre, B.J.P.1
Elliott, L.K.2
Sheng, C.D.3
Gupta, R.P.4
Wall, T.F.5
-
40
-
-
78650986528
-
Oxyfuel coal combustion by efficient integration of oxygen transport membranes
-
Stadler H, Beggel F, Habermehl M, Persigehl B, Kneer R, Modigell M, Jeschke P,. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. Inter. J. Greenhouse Gas Control 2011; 5: 7-15.
-
(2011)
Inter. J. Greenhouse Gas Control
, vol.5
, pp. 7-15
-
-
Stadler, H.1
Beggel, F.2
Habermehl, M.3
Persigehl, B.4
Kneer, R.5
Modigell, M.6
Jeschke, P.7
-
41
-
-
49049104566
-
Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation
-
Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC,. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 2008; 320: 13-41.
-
(2008)
J. Membr. Sci.
, vol.320
, pp. 13-41
-
-
Sunarso, J.1
Baumann, S.2
Serra, J.M.3
Meulenberg, W.A.4
Liu, S.5
Lin, Y.S.6
Diniz Da Costa, J.C.7
-
42
-
-
84905374169
-
Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes
-
Chen Y, Qian B, Hao Y, Liu S, Tadé MO, Shao Z,. Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. J. Membr. Sci. 2014; 470: 102-111.
-
(2014)
J. Membr. Sci.
, vol.470
, pp. 102-111
-
-
Chen, Y.1
Qian, B.2
Hao, Y.3
Liu, S.4
Tadé, M.O.5
Shao, Z.6
-
48
-
-
84902674917
-
Tin-doped perovskite mixed conducting membrane for efficient air separation
-
Zhang Z, Chen Y, Tadé MO, Hao Y, Liu S, Shao Z,. Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2014; 2: 9666-9674.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9666-9674
-
-
Zhang, Z.1
Chen, Y.2
Tadé, M.O.3
Hao, Y.4
Liu, S.5
Shao, Z.6
-
49
-
-
51449101244
-
5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs
-
5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 2008; 56: 4876-4889.
-
(2008)
Acta Mater.
, vol.56
, pp. 4876-4889
-
-
Zhang, K.1
Ge, L.2
Ran, R.3
Shao, Z.4
Liu, S.5
-
50
-
-
84946422960
-
3 - δ (x = 0, 0.5) membrane materials
-
3-δ (x = 0, 0.5) membrane materials. J. Membr. Sci. 2016; 499: 172-178.
-
(2016)
J. Membr. Sci.
, vol.499
, pp. 172-178
-
-
Polfus, J.M.1
Xing, W.2
Pecanac, G.3
Fossdal, A.4
Hanetho, S.M.5
Larring, Y.6
Malzbender, J.7
Fontaine, M.8
Bredesen, R.9
-
51
-
-
77549086088
-
Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes
-
Diniz da Costa JC
-
Sunarso J, Liu S, Diniz da Costa JC. Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes. J. Membr. Sci. 2010; 351: 44-49.
-
(2010)
J. Membr. Sci.
, vol.351
, pp. 44-49
-
-
Sunarso, J.1
Liu, S.2
-
55
-
-
77955310393
-
A coupling strategy to produce hydrogen and ethylene in a membrane reactor
-
Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J,. A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angew. Chem. Int. Ed. 2010; 49: 5656-5660.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 5656-5660
-
-
Jiang, H.1
Cao, Z.2
Schirrmeister, S.3
Schiestel, T.4
Caro, J.5
-
57
-
-
0035283307
-
Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion
-
Shao Z, Dong H, Xiong G, Cong Y, Yang W,. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J. Membr. Sci. 2001; 183: 181-192.
-
(2001)
J. Membr. Sci.
, vol.183
, pp. 181-192
-
-
Shao, Z.1
Dong, H.2
Xiong, G.3
Cong, Y.4
Yang, W.5
-
61
-
-
84859137105
-
Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production
-
Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S,. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv. 2011; 1: 1661-1676.
-
(2011)
RSC Adv.
, vol.1
, pp. 1661-1676
-
-
Zhang, K.1
Sunarso, J.2
Shao, Z.3
Zhou, W.4
Sun, C.5
Wang, S.6
Liu, S.7
-
62
-
-
80053459608
-
3 - δ ceramic membranes
-
3-δ ceramic membranes. J. Membr. Sci. 2011; 383: 235-240.
-
(2011)
J. Membr. Sci.
, vol.383
, pp. 235-240
-
-
Liu, X.1
Zhao, H.2
Yang, J.3
Li, Y.4
Chen, T.5
Lu, X.6
Ding, W.7
Li, F.8
-
66
-
-
84903741778
-
Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications
-
Middelkoop V, Chen H, Michielsen B, Jacobs M, Syvertsen-Wiig G, Mertens M, Buekenhoudt A, Snijkers F,. Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications. J. Membr. Sci. 2014; 468: 250-258.
-
(2014)
J. Membr. Sci.
, vol.468
, pp. 250-258
-
-
Middelkoop, V.1
Chen, H.2
Michielsen, B.3
Jacobs, M.4
Syvertsen-Wiig, G.5
Mertens, M.6
Buekenhoudt, A.7
Snijkers, F.8
-
67
-
-
84924279737
-
3 - δ perovskite-type oxygen permeable membranes
-
3-δ perovskite-type oxygen permeable membranes. J. Mater. Chem. A 2015; 3: 6202-6214.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6202-6214
-
-
Lu, Y.1
Zhao, H.2
Cheng, X.3
Jia, Y.4
Du, X.5
Fang, M.6
Du, Z.7
Zheng, K.8
Świerczek, K.9
-
68
-
-
84946949681
-
2-tolerant oxygen-permeable perovskite-type membranes with high permeability
-
2-tolerant oxygen-permeable perovskite-type membranes with high permeability. J. Mater. Chem. A 2015; 3: 22564-22573.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 22564-22573
-
-
Zhu, J.1
Guo, S.2
Chu, Z.3
Jin, W.4
-
69
-
-
2442676340
-
Novel cobalt-free oxygen permeable membrane
-
Zhu X, Wang H, Yang W,. Novel cobalt-free oxygen permeable membrane. Chem. Commun. 2004; 1130-1131.
-
(2004)
Chem. Commun.
, pp. 1130-1131
-
-
Zhu, X.1
Wang, H.2
Yang, W.3
-
70
-
-
77049120220
-
Novel cobalt-free oxygen-permeable perovskite-type membrane
-
Efimov K, Halfer T, Kuhn A, Heitjans P, Caro J, Feldhoff A,. Novel cobalt-free oxygen-permeable perovskite-type membrane. Chem. Mater. 2010; 22: 1540-1544.
-
(2010)
Chem. Mater.
, vol.22
, pp. 1540-1544
-
-
Efimov, K.1
Halfer, T.2
Kuhn, A.3
Heitjans, P.4
Caro, J.5
Feldhoff, A.6
-
74
-
-
84892630182
-
Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation
-
Xu D, Dong F, Chen Y, Zhao B, Liu S, Tadé MO, Shao Z,. Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. J. Membr. Sci. 2014; 455: 75-82.
-
(2014)
J. Membr. Sci.
, vol.455
, pp. 75-82
-
-
Xu, D.1
Dong, F.2
Chen, Y.3
Zhao, B.4
Liu, S.5
Tadé, M.O.6
Shao, Z.7
-
79
-
-
77954214018
-
Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors
-
Zhu X, Li Q, He Y, Cong Y, Yang W,. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors. J. Membr. Sci. 2010; 360: 454-460.
-
(2010)
J. Membr. Sci.
, vol.360
, pp. 454-460
-
-
Zhu, X.1
Li, Q.2
He, Y.3
Cong, Y.4
Yang, W.5
-
83
-
-
84908415788
-
Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane
-
Zhang Z, Chen D, Chen Y, Hao Y, Tadé MO, Shao Z,. Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. J. Membr. Sci. 2014; 472: 10-18.
-
(2014)
J. Membr. Sci.
, vol.472
, pp. 10-18
-
-
Zhang, Z.1
Chen, D.2
Chen, Y.3
Hao, Y.4
Tadé, M.O.5
Shao, Z.6
-
85
-
-
33751182361
-
3 - δ composite membrane under large oxygen partial pressure gradients
-
3-δ composite membrane under large oxygen partial pressure gradients. J. Membr. Sci. 2006; 286: 22-25.
-
(2006)
J. Membr. Sci.
, vol.286
, pp. 22-25
-
-
Wang, B.1
Yi, J.2
Winnubst, L.3
Chen, C.4
-
86
-
-
84856550513
-
Design and experimental investigation of oxide ceramic dual-phase membranes
-
Zhu X, Li M, Liu H, Zhang T, Cong Y, Yang W,. Design and experimental investigation of oxide ceramic dual-phase membranes. J. Membr. Sci. 2012; 394-395: 120-130.
-
(2012)
J. Membr. Sci.
, vol.394-395
, pp. 120-130
-
-
Zhu, X.1
Li, M.2
Liu, H.3
Zhang, T.4
Cong, Y.5
Yang, W.6
-
88
-
-
84945569028
-
Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction
-
Zhang Z, Zhou W, Chen Y, Chen D, Chen J, Liu S, Jin W, Shao Z,. Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction. ACS Appl. Mater. Interfaces 2015; 7: 22918-22926.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 22918-22926
-
-
Zhang, Z.1
Zhou, W.2
Chen, Y.3
Chen, D.4
Chen, J.5
Liu, S.6
Jin, W.7
Shao, Z.8
-
89
-
-
84874870592
-
Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes
-
Liu Y, Zhu X, Li M, Liu H, Cong Y, Yang W,. Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew. Chem. Int. Ed. 2013; 52: 3232-3236.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 3232-3236
-
-
Liu, Y.1
Zhu, X.2
Li, M.3
Liu, H.4
Cong, Y.5
Yang, W.6
-
93
-
-
84902978247
-
2-tolerant nanostructured layer for oxygen transport membranes
-
2-tolerant nanostructured layer for oxygen transport membranes. RSC Adv. 2014; 4: 25924-25932.
-
(2014)
RSC Adv.
, vol.4
, pp. 25924-25932
-
-
Zhang, Z.1
Chen, D.2
Gao, Y.3
Yang, G.4
Dong, F.5
Chen, C.6
Ciucci, F.7
Shao, Z.8
-
94
-
-
66349092038
-
3 - δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
-
3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 2009; 192: 231-246.
-
(2009)
J. Power Sources
, vol.192
, pp. 231-246
-
-
Zhou, W.1
Ran, R.2
Shao, Z.P.3
-
95
-
-
31844431852
-
Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
-
Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS,. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 2006; 439: 568-571.
-
(2006)
Nature
, vol.439
, pp. 568-571
-
-
Ruiz-Morales, J.C.1
Canales-Vázquez, J.2
Savaniu, C.3
Marrero-López, D.4
Zhou, W.5
Irvine, J.T.S.6
-
96
-
-
77955663829
-
Materials challenges toward proton-conducting oxide fuel cells: A critical review
-
Fabbri E, Pergolesi D, Traversa E,. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 2010; 39: 4355-4369.
-
(2010)
Chem. Soc. Rev.
, vol.39
, pp. 4355-4369
-
-
Fabbri, E.1
Pergolesi, D.2
Traversa, E.3
-
97
-
-
0037263853
-
Solid oxide fuel cells
-
Ormerod RM,. Solid oxide fuel cells. Chem. Soc. Rev. 2003; 32: 17-28.
-
(2003)
Chem. Soc. Rev.
, vol.32
, pp. 17-28
-
-
Ormerod, R.M.1
-
98
-
-
0037447659
-
Development of interconnect materials for solid oxide fuel cells
-
Zhu WZ, Deevi SC,. Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A 2003; 348: 227-243.
-
(2003)
Mater. Sci. Eng. A
, vol.348
, pp. 227-243
-
-
Zhu, W.Z.1
Deevi, S.C.2
-
104
-
-
4544245943
-
A high-performance cathode for the next generation of solid-oxide fuel cells
-
Shao ZP, Haile SM,. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004; 431: 170-173.
-
(2004)
Nature
, vol.431
, pp. 170-173
-
-
Shao, Z.P.1
Haile, S.M.2
-
105
-
-
52149102715
-
3 - δ as a cathode material for low temperature solid-oxide fuel cell
-
3-δ as a cathode material for low temperature solid-oxide fuel cell. Electrochem. Commun. 2008; 10: 1647-1651.
-
(2008)
Electrochem. Commun.
, vol.10
, pp. 1647-1651
-
-
Zhou, W.1
Shao, Z.P.2
Ran, R.3
Cai, R.4
-
106
-
-
56349129705
-
A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 °c
-
Zhou W, Shao ZP, Ran R, Jin WQ, Xu NP,. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 °C. Chem. Commun. 2008; 44: 5791-5793.
-
(2008)
Chem. Commun.
, vol.44
, pp. 5791-5793
-
-
Zhou, W.1
Shao, Z.P.2
Ran, R.3
Jin, W.Q.4
Xu, N.P.5
-
108
-
-
84906231952
-
3 - δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells
-
3-δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. J. Mater. Chem. A 2014; 2: 15078-15086.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 15078-15086
-
-
Qian, B.1
Chen, Y.2
Tade, M.O.3
Shao, Z.P.4
-
109
-
-
84890524917
-
An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells
-
Zhu Y, Chen ZG, Zhou W, Jiang S, Zou J, Shao ZP,. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. ChemSusChem 2013; 6: 2249-2254.
-
(2013)
ChemSusChem
, vol.6
, pp. 2249-2254
-
-
Zhu, Y.1
Chen, Z.G.2
Zhou, W.3
Jiang, S.4
Zou, J.5
Shao, Z.P.6
-
110
-
-
84957900955
-
Promotion of oxygen reduction by exsolved Silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells
-
Zhu Y, Zhou W, Ran R, Chen Y, Shao ZP, Liu M,. Promotion of oxygen reduction by exsolved Silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 2016; 16: 512-518.
-
(2016)
Nano Lett.
, vol.16
, pp. 512-518
-
-
Zhu, Y.1
Zhou, W.2
Ran, R.3
Chen, Y.4
Shao, Z.P.5
Liu, M.6
-
112
-
-
79952402174
-
6 - X for highly efficient oxygen reduction reaction
-
6-x for highly efficient oxygen reduction reaction. Energy Environ. Sci. 2011; 4: 872-875.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 872-875
-
-
Zhou, W.1
Sunarso, J.2
Chen, Z.G.3
Ge, L.4
Motuzas, J.5
Zou, J.6
Wang, G.7
Julbe, A.8
Zhu, Z.9
-
113
-
-
78049328115
-
High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells
-
Niu Y, Zhou W, Sunarso J, Ge L, Zhu Z, Shao ZP,. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010; 20: 9619-9622.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9619-9622
-
-
Niu, Y.1
Zhou, W.2
Sunarso, J.3
Ge, L.4
Zhu, Z.5
Shao, Z.P.6
-
114
-
-
84864278813
-
5 + δ (Ln = lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells
-
5 + δ (Ln = lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2012; 78: 466-474.
-
(2012)
Electrochim. Acta
, vol.78
, pp. 466-474
-
-
Chen, D.1
Wang, F.2
Shi, H.3
Ran, R.4
Shao, Z.P.5
-
116
-
-
84940537776
-
3 - δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
-
3-δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 2015; 298: 209-216.
-
(2015)
J. Power Sources
, vol.298
, pp. 209-216
-
-
Jiang, S.1
Sunarso, J.2
Zhou, W.3
Shen, J.4
Ran, R.5
Shao, Z.P.6
-
117
-
-
84863902458
-
3 - δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte
-
3-δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. J. Mater. Chem. 2012; 22: 15071-15079.
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 15071-15079
-
-
Dong, F.1
Chen, D.2
Chen, Y.3
Zhao, Q.4
Shao, Z.P.5
-
119
-
-
84942988952
-
Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements
-
1500537
-
Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade MO, Shao ZP,. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energy Mater. 2015; 5 1500537:.
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Chen, Y.1
Zhou, W.2
Ding, D.3
Liu, M.4
Ciucci, F.5
Tade, M.O.6
Shao, Z.P.7
-
122
-
-
84859784423
-
2-protective shell for highly efficient oxygen reduction reaction
-
2-protective shell for highly efficient oxygen reduction reaction. Sci. Rep. 2012; 2: 327. doi: 10.1038/srep00327.
-
(2012)
Sci. Rep.
, vol.2
, pp. 327
-
-
Zhou, W.1
Liang, F.2
Shao, Z.P.3
Zhu, Z.4
-
123
-
-
84891504288
-
3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells
-
3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells. Chin. J. Catal. 2014; 35: 38-42.
-
(2014)
Chin. J. Catal.
, vol.35
, pp. 38-42
-
-
Meng, L.1
Wang, F.2
Wang, A.3
Pu, J.4
Chi, B.5
Li, J.6
-
124
-
-
77954772307
-
1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells
-
1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J. Power Sources 2010; 195: 7187-7195.
-
(2010)
J. Power Sources
, vol.195
, pp. 7187-7195
-
-
Chen, D.1
Ran, R.2
Shao, Z.P.3
-
127
-
-
80053298306
-
A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration
-
Zhou W, Shao ZP, Liang F, Chen ZG, Zhu Z, Jin WQ, Xu NP,. A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 2011; 21: 15343-15351.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 15343-15351
-
-
Zhou, W.1
Shao, Z.P.2
Liang, F.3
Chen, Z.G.4
Zhu, Z.5
Jin, W.Q.6
Xu, N.P.7
-
128
-
-
84898797404
-
Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: Structural and catalytic aspects
-
Oh T, Yu AS, Adijanto L, Gorte RJ, Vohs JM,. Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: structural and catalytic aspects. J. Power Sources 2014; 262: 207-212.
-
(2014)
J. Power Sources
, vol.262
, pp. 207-212
-
-
Oh, T.1
Yu, A.S.2
Adijanto, L.3
Gorte, R.J.4
Vohs, J.M.5
-
129
-
-
0141509995
-
A redox-stable efficient anode for solid-oxide fuel cells
-
Tao S, Irvine JTS,. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003; 2: 320-323.
-
(2003)
Nat. Mater.
, vol.2
, pp. 320-323
-
-
Tao, S.1
Irvine, J.T.S.2
-
130
-
-
33845272752
-
3 - δ observed by in situ high-temperature neutron powder diffraction
-
3-δ observed by in situ high-temperature neutron powder diffraction. Chem. Mater. 2006; 18: 5453-5460.
-
(2006)
Chem. Mater.
, vol.18
, pp. 5453-5460
-
-
Tao, S.1
Irvine, J.T.S.2
-
132
-
-
70349547065
-
Effect of Ba doping on performance of LST as anode in solid oxide fuel cells
-
Vincent A, Luo J-L, Chuang KT, Sanger AR,. Effect of Ba doping on performance of LST as anode in solid oxide fuel cells. J. Power Sources 2010; 195: 769-774.
-
(2010)
J. Power Sources
, vol.195
, pp. 769-774
-
-
Vincent, A.1
Luo, J.-L.2
Chuang, K.T.3
Sanger, A.R.4
-
134
-
-
33645867976
-
Double perovskites as anode materials for solid-oxide fuel cells
-
Huang Y-H, Dass RI, Xing Z-L, Goodenough JB,. Double perovskites as anode materials for solid-oxide fuel cells. Science 2006; 312: 254-257.
-
(2006)
Science
, vol.312
, pp. 254-257
-
-
Huang, Y.-H.1
Dass, R.I.2
Xing, Z.-L.3
Goodenough, J.B.4
-
135
-
-
77953129564
-
6 - δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells
-
6-δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J. Power Sources 2010; 195: 6356-6366.
-
(2010)
J. Power Sources
, vol.195
, pp. 6356-6366
-
-
Zhang, L.1
Zhou, Q.2
He, Q.3
He, T.4
-
137
-
-
50949129720
-
2 composite anodes for direct methane and ethanol solid oxide fuel cells
-
2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 2008; 185: 179-182.
-
(2008)
J. Power Sources
, vol.185
, pp. 179-182
-
-
Jiang, S.P.1
Ye, Y.2
He, T.3
Ho, S.B.4
-
140
-
-
84863374299
-
Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells
-
Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M,. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 2012; 24: 1439-1443.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1439-1443
-
-
Yang, C.1
Yang, Z.2
Jin, C.3
Xiao, G.4
Chen, F.5
Han, M.6
-
142
-
-
84885630974
-
Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels
-
Wang W, Su C, Wu Y, Ran R, Shao ZP,. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 2013; 113: 8104-8151.
-
(2013)
Chem. Rev.
, vol.113
, pp. 8104-8151
-
-
Wang, W.1
Su, C.2
Wu, Y.3
Ran, R.4
Shao, Z.P.5
-
143
-
-
84951138417
-
Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
-
Qu J, Wang W, Chen Y, Deng X, Shao ZP,. Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl. Energy 2016; 164: 563-571.
-
(2016)
Appl. Energy
, vol.164
, pp. 563-571
-
-
Qu, J.1
Wang, W.2
Chen, Y.3
Deng, X.4
Shao, Z.P.5
-
144
-
-
84903459095
-
Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells
-
Wang W, Su C, Ran R, Zhao B, Shao ZP, Tade MO, Liu S,. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 2014; 7: 1719-1728.
-
(2014)
ChemSusChem
, vol.7
, pp. 1719-1728
-
-
Wang, W.1
Su, C.2
Ran, R.3
Zhao, B.4
Shao, Z.P.5
Tade, M.O.6
Liu, S.7
-
145
-
-
84908120098
-
Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase
-
Wang F, Wang W, Qu J, Zhong Y, Tade MO, Shao ZP,. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Environ. Sci. Technol. 2014; 48: 12427-12434.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 12427-12434
-
-
Wang, F.1
Wang, W.2
Qu, J.3
Zhong, Y.4
Tade, M.O.5
Shao, Z.P.6
-
148
-
-
0000535842
-
3 by doping Co
-
3 by doping Co. Chem. Mater. 1999; 11: 2081-2088.
-
(1999)
Chem. Mater.
, vol.11
, pp. 2081-2088
-
-
Ishihara, T.1
Furutani, H.2
Honda, M.3
Yamada, T.4
Shibayama, T.5
Akbay, T.6
Sakai, N.7
Yokokawa, H.8
Takita, Y.9
-
149
-
-
33646461840
-
Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity
-
Khorkounov BA, Näfe H, Aldinger F,. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity. J. Sol. Stat. Electrochem. 2006; 10: 479-487.
-
(2006)
J. Sol. Stat. Electrochem.
, vol.10
, pp. 479-487
-
-
Khorkounov, B.A.1
Näfe, H.2
Aldinger, F.3
-
152
-
-
0032675261
-
3-based proton conductors in water-containing atmospheres
-
3-based proton conductors in water-containing atmospheres. J. Electrochem. Soc. 1999; 146: 2038-2044.
-
(1999)
J. Electrochem. Soc.
, vol.146
, pp. 2038-2044
-
-
Bhide, S.V.1
Virkar, A.V.2
-
153
-
-
43849084559
-
3 - δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs)
-
3-δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 2008; 1: 69-76.
-
(2008)
Fuel Cells
, vol.1
, pp. 69-76
-
-
D'Epifanio, A.1
Fabbri, E.2
Di Bartolomeo, E.3
Licoccia, S.4
Traversa, E.5
-
155
-
-
33745614080
-
A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers
-
Tao S, Irvine JTS,. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 2006; 18: 1581-1584.
-
(2006)
Adv. Mater.
, vol.18
, pp. 1581-1584
-
-
Tao, S.1
Irvine, J.T.S.2
-
156
-
-
77955288358
-
3 - δ-based electrolytes for application in an anode-supported protonic solid oxide fuel cell
-
3-δ-based electrolytes for application in an anode-supported protonic solid oxide fuel cell. Int. J. Hydrogen Energy 2010; 35: 5611-5620.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 5611-5620
-
-
Guo, Y.1
Ran, R.2
Shao, Z.P.3
-
157
-
-
84896859155
-
Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress-egress approach
-
Liu Y, Ran R, Li S, Jiao Y, Tade MO, Shao ZP,. Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress-egress approach. J. Power Sources 2014; 257: 308-318.
-
(2014)
J. Power Sources
, vol.257
, pp. 308-318
-
-
Liu, Y.1
Ran, R.2
Li, S.3
Jiao, Y.4
Tade, M.O.5
Shao, Z.P.6
-
158
-
-
84942899343
-
Readily processed protonic ceramic fuel cells with high performance at low temperatures
-
Duan C, Tong J, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O'Hayre R,. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015; 349: 1321-1326.
-
(2015)
Science
, vol.349
, pp. 1321-1326
-
-
Duan, C.1
Tong, J.2
Shang, M.3
Nikodemski, S.4
Sanders, M.5
Ricote, S.6
Almansoori, A.7
O'Hayre, R.8
-
159
-
-
67349174228
-
3 - δ perovskite oxide as novel interconnect material for solid oxide fuel cells
-
3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. J. Alloys Compd. 2009; 479: 764-768.
-
(2009)
J. Alloys Compd.
, vol.479
, pp. 764-768
-
-
Wang, S.1
Lin, B.2
Chen, Y.3
Liu, X.4
Meng, G.5
-
160
-
-
33845606717
-
2 (Re = Sm, Gd, Y) for solid oxide fuel cells
-
2 (Re = Sm, Gd, Y) for solid oxide fuel cells. J. Power Sources 2007; 164: 293-299.
-
(2007)
J. Power Sources
, vol.164
, pp. 293-299
-
-
Zhou, X.1
Deng, F.2
Zhu, M.3
Meng, G.4
Liu, X.5
-
161
-
-
84860362610
-
Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
-
Stephens IEL, Bondraenko AS, Grønbierq U, Rossmeisi J, Chorkendorff I,. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012; 5: 6744-6762.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6744-6762
-
-
Stephens, I.E.L.1
Bondraenko, A.S.2
Grønbierq, U.3
Rossmeisi, J.4
Chorkendorff, I.5
-
162
-
-
84905694039
-
Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions
-
Lin L, Zhu Q, Xu A,. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014; 136: 11027-11033.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 11027-11033
-
-
Lin, L.1
Zhu, Q.2
Xu, A.3
-
163
-
-
84887049834
-
Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction
-
Liang H, Wei W, Wu Z, Feng X, Müllen K,. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013; 135: 16002-16005.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 16002-16005
-
-
Liang, H.1
Wei, W.2
Wu, Z.3
Feng, X.4
Müllen, K.5
-
165
-
-
84898921676
-
4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction
-
4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014; 26: 2408-2412.
-
(2014)
Adv. Mater.
, vol.26
, pp. 2408-2412
-
-
Zhang, G.1
Xia, B.2
Wang, X.3
Lou, X.4
-
166
-
-
84885837863
-
Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
-
Liu M, Dong Y, Wu Y, Feng H, Li J,. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction. Chem. Eur. J. 2013; 19: 14781-14786.
-
(2013)
Chem. Eur. J.
, vol.19
, pp. 14781-14786
-
-
Liu, M.1
Dong, Y.2
Wu, Y.3
Feng, H.4
Li, J.5
-
167
-
-
84867750790
-
Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes
-
Sharifi T, Hu G, Jia X, Wagberg T,. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012; 6: 8904-8912.
-
(2012)
ACS Nano
, vol.6
, pp. 8904-8912
-
-
Sharifi, T.1
Hu, G.2
Jia, X.3
Wagberg, T.4
-
168
-
-
84874850369
-
Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis
-
Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ,. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 2013; 52: 3110-3116.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, pp. 3110-3116
-
-
Zheng, Y.1
Jiao, Y.2
Ge, L.3
Jaroniec, M.4
Qiao, S.Z.5
-
169
-
-
79959577135
-
Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
-
Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y,. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011; 3: 546-550.
-
(2011)
Nat. Chem.
, vol.3
, pp. 546-550
-
-
Suntivich, J.1
Gasteiger, H.A.2
Yabuuchi, N.3
Nakanishi, H.4
Goodenough, J.B.5
Shao-Horn, Y.6
-
170
-
-
70349554396
-
Alloys of platinum and early transition metals as oxygen reduction electrocatalysts
-
Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK,. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009; 1: 552-556.
-
(2009)
Nat. Chem.
, vol.1
, pp. 552-556
-
-
Greeley, J.1
Stephens, I.E.L.2
Bondarenko, A.S.3
Johansson, T.P.4
Hansen, H.A.5
Jaramillo, T.F.6
Rossmeisl, J.7
Chorkendorff, I.8
Nørskov, J.K.9
-
171
-
-
0030290830
-
Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution
-
Hyodo T, Hayashi M, Miura N, Yamazoe N,. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution. J. Electrochem. Soc. 1996; 143: L266-L267.
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. L266-L267
-
-
Hyodo, T.1
Hayashi, M.2
Miura, N.3
Yamazoe, N.4
-
173
-
-
60649112483
-
3 catalysts towards oxygen reduction in alkaline electrolytes
-
3 catalysts towards oxygen reduction in alkaline electrolytes. J. Power Sources 2009; 188: 359-366.
-
(2009)
J. Power Sources
, vol.188
, pp. 359-366
-
-
Tulloch, J.1
Donne, S.W.2
-
176
-
-
84870375534
-
3 - δ - a new bi-functional catalyst for rechargeable metal-air battery applications
-
3-δ-a new bi-functional catalyst for rechargeable metal-air battery applications. J. Power Sources 2013; 227: 48-52.
-
(2013)
J. Power Sources
, vol.227
, pp. 48-52
-
-
Velraj, S.1
Zhu, J.H.2
-
177
-
-
84904651094
-
3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium
-
3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium. J. Power Sources 2014; 269: 144-151.
-
(2014)
J. Power Sources
, vol.269
, pp. 144-151
-
-
Hu, J.1
Wang, L.2
Shi, L.3
Huang, H.4
-
178
-
-
84858133396
-
Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: A thin-film rotating ring-disk electrode study
-
Sunarso J, Torriero AA, Zhou W, Howlett PC, Forsyth M,. Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J. Phys. Chem. C 2012; 116: 5827-5834.
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 5827-5834
-
-
Sunarso, J.1
Torriero, A.A.2
Zhou, W.3
Howlett, P.C.4
Forsyth, M.5
-
182
-
-
84928668483
-
Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite
-
Zhu Y, Zhou W, Chen Y, Yu J, Xu X, Su C, Tadé MO, Shao Z,. Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite. Chem. Mater. 2015; 27: 3048-3054.
-
(2015)
Chem. Mater.
, vol.27
, pp. 3048-3054
-
-
Zhu, Y.1
Zhou, W.2
Chen, Y.3
Yu, J.4
Xu, X.5
Su, C.6
Tadé, M.O.7
Shao, Z.8
-
183
-
-
62649090565
-
3 perovskite for bi-functional catalysis in an alkaline electrolyte
-
3 perovskite for bi-functional catalysis in an alkaline electrolyte. J. Power Sources 2009; 189: 1003-1007.
-
(2009)
J. Power Sources
, vol.189
, pp. 1003-1007
-
-
Chang, Y.1
Wu, P.2
Wu, C.3
Hsieh, Y.4
-
185
-
-
84893469474
-
3 - y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: Ex situ testing using the rotating ring-disk electrode voltammetry method
-
3-y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: ex situ testing using the rotating ring-disk electrode voltammetry method. J. Mater. Chem. A 2014; 2: 3047-3056.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 3047-3056
-
-
Hancock, C.A.1
Ong, A.L.2
Slater, P.R.3
Varcoe, J.R.4
-
187
-
-
84860165938
-
Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes
-
Malkhandi S, Yang B, Manohar AK, Manivannan A, Prakash GKS, Narayanan SR,. Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J. Phys. Chem. Lett. 2012; 3: 967-972.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 967-972
-
-
Malkhandi, S.1
Yang, B.2
Manohar, A.K.3
Manivannan, A.4
Prakash, G.K.S.5
Narayanan, S.R.6
-
188
-
-
84920749766
-
3 - δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer
-
3-δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv. Mater. 2015; 27: 266-271.
-
(2015)
Adv. Mater.
, vol.27
, pp. 266-271
-
-
Jung, J.-I.1
Jeong, H.Y.2
Kim, M.G.3
Nam, G.4
Park, J.5
Cho, J.6
-
189
-
-
84951727714
-
Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts
-
1501560
-
Jung J-I, Park S, Kim MG, Cho J,. Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Adv. Energy Mater. 2015; 5 1501560:.
-
(2015)
Adv. Energy Mater.
, vol.5
-
-
Jung, J.-I.1
Park, S.2
Kim, M.G.3
Cho, J.4
-
194
-
-
84938686066
-
2
-
2. ACS Catal. 2015; 5: 4825-4832.
-
(2015)
ACS Catal.
, vol.5
, pp. 4825-4832
-
-
Li, L.1
Feng, X.2
Nie, Y.3
Chen, S.4
Shi, F.5
Xiong, K.6
Ding, W.7
Qi, X.8
Hu, J.9
Wei, Z.10
Wan, L.11
Xia, M.12
-
195
-
-
84870365013
-
2.91 nanowires with ultrahigh capacity for Li-air batteries
-
2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 19569-19574.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 19569-19574
-
-
Zhao, Y.1
Xu, L.2
Mai, L.3
Han, C.4
An, Q.5
Xu, X.6
Liu, X.7
Zhang, Q.8
-
196
-
-
84944315816
-
3 - X nanotubes: A bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries
-
3-x nanotubes: a bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 2015; 7: 22478-22486.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 22478-22486
-
-
Liu, G.1
Chen, H.2
Xia, L.3
Wang, S.4
Ding, L.5
Li, D.6
Xiao, K.7
Dai, S.8
Wang, H.9
-
197
-
-
84877997392
-
3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction
-
3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 2013; 241: 225-230.
-
(2013)
J. Power Sources
, vol.241
, pp. 225-230
-
-
Jin, C.1
Cao, X.2
Zhang, L.3
Zhang, C.4
Yang, R.5
-
198
-
-
84906259073
-
3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction
-
3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction. J. Power Sources 2014; 271: 55-59.
-
(2014)
J. Power Sources
, vol.271
, pp. 55-59
-
-
Lu, F.1
Sui, J.2
Su, J.3
Jin, C.4
Shen, M.5
Yang, R.6
-
199
-
-
84930642262
-
3 perovskite nanorods as efficient electrocatalysts for lithium-air battery
-
3 perovskite nanorods as efficient electrocatalysts for lithium-air battery. J. Power Sources 2015; 293: 726-733.
-
(2015)
J. Power Sources
, vol.293
, pp. 726-733
-
-
Lu, F.1
Wang, Y.2
Jin, C.3
Li, F.4
Yang, R.5
-
200
-
-
84935912323
-
3 porous nanorods with enhanced electrocatalytic properties for oxygen reduction and oxygen evolution
-
3 porous nanorods with enhanced electrocatalytic properties for oxygen reduction and oxygen evolution. Electrochim. Acta 2015; 174: 551-556.
-
(2015)
Electrochim. Acta
, vol.174
, pp. 551-556
-
-
Xu, Y.1
Tsou, A.2
Fu, Y.3
Wang, J.4
Tian, J.5
Yang, R.6
-
201
-
-
84899536361
-
A bifunctional perovskite catalyst for oxygen reduction and evolution
-
Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J,. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem. Int. Ed. 2014; 53: 4582-4586.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 4582-4586
-
-
Jung, J.-I.1
Jeong, H.Y.2
Lee, J.-S.3
Kim, M.G.4
Cho, J.5
-
202
-
-
84953439897
-
Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis
-
Jung J-I, Risch M, Park S, Kim MG, Nam G, Jeong HY, Shao-Horn Y, Cho J,. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 2016; 9: 176-183.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 176-183
-
-
Jung, J.-I.1
Risch, M.2
Park, S.3
Kim, M.G.4
Nam, G.5
Jeong, H.Y.6
Shao-Horn, Y.7
Cho, J.8
-
203
-
-
77954716619
-
Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode
-
Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y,. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 2010; 157: B1263-B1268.
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. B1263-B1268
-
-
Suntivich, J.1
Gasteiger, H.A.2
Yabuuchi, N.3
Shao-Horn, Y.4
-
204
-
-
79953219462
-
3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes
-
3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes. J. Electrochem. Soc. 2011; 158: A597-A604.
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A597-A604
-
-
Li, X.1
Qu, W.2
Zhang, J.3
Wang, H.4
-
205
-
-
84863516945
-
Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction
-
Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER,. Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal. Today 2012; 189: 83-92.
-
(2012)
Catal. Today
, vol.189
, pp. 83-92
-
-
Poux, T.1
Napolskiy, F.S.2
Dintzer, T.3
Kéranguéven, G.4
Istomin, S.Y.5
Tsirlina, G.A.6
Antipov, E.V.7
Savinova, E.R.8
-
206
-
-
84881529367
-
Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells
-
Malkhandi S, Trinh P, Manohar AK, Jayachandrababu KC, Kindler A, Prakash GKS, Narayanan SR,. Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells. J. Electrochem. Soc. 2013; 160: F943-F952.
-
(2013)
J. Electrochem. Soc.
, vol.160
, pp. F943-F952
-
-
Malkhandi, S.1
Trinh, P.2
Manohar, A.K.3
Jayachandrababu, K.C.4
Kindler, A.5
Prakash, G.K.S.6
Narayanan, S.R.7
-
209
-
-
84955151193
-
Conductivity-dependent completion of oxygen reduction on oxide catalysts
-
Lee DG, Gwon O, Park HS, Kim SH, Yang J, Kwak SK, Kim G, Song HK,. Conductivity-dependent completion of oxygen reduction on oxide catalysts. Angew. Chem. Int. Ed. 2015; 54: 15730-15733.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 15730-15733
-
-
Lee, D.G.1
Gwon, O.2
Park, H.S.3
Kim, S.H.4
Yang, J.5
Kwak, S.K.6
Kim, G.7
Song, H.K.8
-
210
-
-
79251510231
-
Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities
-
Miyazaki K, Kawakita K, Abe T, Fukutsuka T, Kojima K, Ogumi Z,. Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. J. Mater. Chem. 2011; 21: 1913-1917.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 1913-1917
-
-
Miyazaki, K.1
Kawakita, K.2
Abe, T.3
Fukutsuka, T.4
Kojima, K.5
Ogumi, Z.6
-
211
-
-
84876588139
-
Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes
-
Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ,. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 2013; 4: 1254-1259.
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 1254-1259
-
-
Hardin, W.G.1
Slanac, D.A.2
Wang, X.3
Dai, S.4
Johnston, K.P.5
Stevenson, K.J.6
-
212
-
-
84924971799
-
Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries
-
Park HW, Lee DU, Park MG, Ahmed R, Seo MH, Nazar LF, Chen Z,. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. ChemSusChem 2015; 8: 1058-1065.
-
(2015)
ChemSusChem
, vol.8
, pp. 1058-1065
-
-
Park, H.W.1
Lee, D.U.2
Park, M.G.3
Ahmed, R.4
Seo, M.H.5
Nazar, L.F.6
Chen, Z.7
-
213
-
-
84928999455
-
3 - δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries
-
3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 2015; 15: 92-103.
-
(2015)
Nano Energy
, vol.15
, pp. 92-103
-
-
Prabu, M.1
Ramakrishnan, P.2
Ganesan, P.3
Manthiram, A.4
Shanmugam, S.5
-
214
-
-
84929193458
-
3-δ nanorod/graphene hybrid in alkaline media
-
3-δ nanorod/graphene hybrid in alkaline media. Nanoscale 2015; 7: 9046-9054.
-
(2015)
Nanoscale
, vol.7
, pp. 9046-9054
-
-
Ge, X.1
Thomas, G.2
Li, B.3
Andy Hor, T.S.4
Zhang, J.5
Xiao, P.6
Wang, X.7
Zong, Y.8
Liu, Z.9
-
215
-
-
84957091575
-
3 - δ nanorods as an efficient bifunctional electrocatalyst for hybrid Li-air batteries
-
3-δ nanorods as an efficient bifunctional electrocatalyst for hybrid Li-air batteries. J. Mater. Chem. A 2016; 4: 2122-2127.
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 2122-2127
-
-
Kim, C.1
Gwon, O.2
Jeon, I.Y.3
Kim, Y.4
Shin, J.5
Ju, Y.W.6
Baek, J.B.7
Kim, G.8
-
216
-
-
84907997905
-
Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries
-
Park HW, Lee DU, Zamani P, Seo MH, Nazar LF, Chen Z,. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 2014; 10: 192-200.
-
(2014)
Nano Energy
, vol.10
, pp. 192-200
-
-
Park, H.W.1
Lee, D.U.2
Zamani, P.3
Seo, M.H.4
Nazar, L.F.5
Chen, Z.6
-
217
-
-
67849128456
-
Powering the planet with solar fuel
-
Gray HB,. Powering the planet with solar fuel. Nat. Chem. 2009; 1: 7. doi: 10.1038/nchem.141.
-
(2009)
Nat. Chem.
, vol.1
, pp. 7
-
-
Gray, H.B.1
-
219
-
-
38949102073
-
Building better batteries
-
Armand M, Tarascon JM,. Building better batteries. Nature 2008; 451: 652-657.
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
220
-
-
4043112177
-
Sustainable hydrogen production
-
Turner JA,. Sustainable hydrogen production. Science 2004; 305: 972-974.
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
222
-
-
0022791535
-
2 for anodic oxygen evolution in acid media
-
2 for anodic oxygen evolution in acid media. Electrochim. Acta 1986; 31: 1311-1316.
-
(1986)
Electrochim. Acta
, vol.31
, pp. 1311-1316
-
-
Kötz, R.1
Stucki, S.2
-
223
-
-
82455186174
-
Dynamic potential-pH diagrams application to electrocatalysts for water oxidation
-
Minguzzi A, Fan F-RF, Vertova A, Rondinini S, Bard AJ,. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 2012; 3: 217-229.
-
(2012)
Chem. Sci.
, vol.3
, pp. 217-229
-
-
Minguzzi, A.1
Fan, F.-R.2
Vertova, A.3
Rondinini, S.4
Bard, A.J.5
-
224
-
-
83255187152
-
A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
-
Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y,. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011; 334: 1383-1385.
-
(2011)
Science
, vol.334
, pp. 1383-1385
-
-
Suntivich, J.1
May, K.J.2
Gasteiger, H.A.3
Goodenough, J.B.4
Shao-Horn, Y.5
-
225
-
-
84869454313
-
Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts
-
May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee Y-L, Grimaud A, Shao-Horn Y,. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012; 3: 3264-3270.
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 3264-3270
-
-
May, K.J.1
Carlton, C.E.2
Stoerzinger, K.A.3
Risch, M.4
Suntivich, J.5
Lee, Y.-L.6
Grimaud, A.7
Shao-Horn, Y.8
-
226
-
-
84877013198
-
Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS
-
Risch M, Grimaud A, May KJ, Stoerzinger KA, Chen TJ, Mansour AN, Shao-Horn Y,. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 2013; 117: 8628-8635.
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 8628-8635
-
-
Risch, M.1
Grimaud, A.2
May, K.J.3
Stoerzinger, K.A.4
Chen, T.J.5
Mansour, A.N.6
Shao-Horn, Y.7
-
227
-
-
84890510677
-
Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution
-
Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y,. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013; 4: 2439.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2439
-
-
Grimaud, A.1
May, K.J.2
Carlton, C.E.3
Lee, Y.-L.4
Risch, M.5
Hong, W.T.6
Zhou, J.7
Shao-Horn, Y.8
-
229
-
-
84902155943
-
Tuning the electrocatalytic activity of perovskites through active site variation and support interactions
-
Hardin WG, Mefford JT, Slanac DA, Patel BB, Wang X, Dai S, Zhao X, Ruoff RS, Johnston KP, Stevenson KJ,. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 2014; 26: 3368-3376.
-
(2014)
Chem. Mater.
, vol.26
, pp. 3368-3376
-
-
Hardin, W.G.1
Mefford, J.T.2
Slanac, D.A.3
Patel, B.B.4
Wang, X.5
Dai, S.6
Zhao, X.7
Ruoff, R.S.8
Johnston, K.P.9
Stevenson, K.J.10
-
230
-
-
84908376898
-
5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction
-
5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014; 136: 14646-14649.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 14646-14649
-
-
Kim, J.1
Yin, X.2
Tsao, K.-C.3
Fang, S.4
Yang, H.5
-
231
-
-
84907842105
-
3/carbon nanotube composite for rechargeable zinc-air batteries
-
3/carbon nanotube composite for rechargeable zinc-air batteries. RSC Adv. 2014; 4: 46084-46092.
-
(2014)
RSC Adv.
, vol.4
, pp. 46084-46092
-
-
Ma, H.1
Wang, B.2
-
232
-
-
84941071804
-
Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction
-
Rincón RA, Ventosa E, Tietz F, Masa J, Seisel S, Kuznetsov V, Schuhmann W,. Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction. Chem. Phy.sChem 2014; 15: 2810-2816.
-
(2014)
Chem. Phy.sChem
, vol.15
, pp. 2810-2816
-
-
Rincón, R.A.1
Ventosa, E.2
Tietz, F.3
Masa, J.4
Seisel, S.5
Kuznetsov, V.6
Schuhmann, W.7
-
234
-
-
84957808088
-
A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect
-
Zhu Y, Su C, Xu X, Zhou W, Ran R, Shao Z,. A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. Chem. Eur. J. 2014; 20: 15533-15542.
-
(2014)
Chem. Eur. J.
, vol.20
, pp. 15533-15542
-
-
Zhu, Y.1
Su, C.2
Xu, X.3
Zhou, W.4
Ran, R.5
Shao, Z.6
-
235
-
-
84937604067
-
Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
-
Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kötz R, Schmidt TJ,. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015; 5: 12167.
-
(2015)
Sci. Rep.
, vol.5
, pp. 12167
-
-
Binninger, T.1
Mohamed, R.2
Waltar, K.3
Fabbri, E.4
Levecque, P.5
Kötz, R.6
Schmidt, T.J.7
-
237
-
-
84948139253
-
3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties
-
3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 2015; 27: 7662-7672.
-
(2015)
Chem. Mater.
, vol.27
, pp. 7662-7672
-
-
Cheng, X.1
Fabbri, E.2
Nachtegaal, M.3
Castelli, I.E.4
El Kazzi, M.5
Haumont, R.6
Marzari, N.7
Schmidt, T.J.8
-
238
-
-
84944279782
-
Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction
-
Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y,. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015; 27: 5989-5994.
-
(2015)
Adv. Mater.
, vol.27
, pp. 5989-5994
-
-
Guo, Y.1
Tong, Y.2
Chen, P.3
Xu, K.4
Zhao, J.5
Lin, Y.6
Chu, W.7
Peng, Z.8
Wu, C.9
Xie, Y.10
-
239
-
-
84921265837
-
Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications
-
Lee DU, Park HW, Park MG, Ismayilov V, Chen Z,. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. ACS Appl. Mater. Interfaces 2015; 7: 902-910.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 902-910
-
-
Lee, D.U.1
Park, H.W.2
Park, M.G.3
Ismayilov, V.4
Chen, Z.5
-
240
-
-
84939186760
-
3 (B = Cr, Mn, Fe, Co and Ni)
-
3 (B = Cr, Mn, Fe, Co and Ni). Phys. Chem. Chem. Phys. 2015; 17: 21643-21663.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 21643-21663
-
-
Lee, Y.-L.1
Gadre, M.J.2
Shao-Horn, Y.3
Morgan, D.4
-
241
-
-
84920725940
-
Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation
-
Liu R, Liang F, Zhou W, Yang Y, Zhu Z,. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 2015; 12: 115-122.
-
(2015)
Nano Energy
, vol.12
, pp. 115-122
-
-
Liu, R.1
Liang, F.2
Zhou, W.3
Yang, Y.4
Zhu, Z.5
-
242
-
-
84928037155
-
Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction
-
Malkhandi S, Trinh P, Manohar AK, Manivannan A, Balasubramanian M, Prakash GKS, Narayanan SR,. Design insights for tuning the electrocatalytic activity of perovskite oxides for the oxygen evolution reaction. J. Phys. Chem. C 2015; 119: 8004-8013.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 8004-8013
-
-
Malkhandi, S.1
Trinh, P.2
Manohar, A.K.3
Manivannan, A.4
Balasubramanian, M.5
Prakash, G.K.S.6
Narayanan, S.R.7
-
243
-
-
84928386128
-
Electrocatalysis of perovskites: The influence of carbon on the oxygen evolution activity
-
Mohamed R, Cheng X, Fabbri E, Levecque P, Koetz R, Conrad O, Schmidt TJ,. Electrocatalysis of perovskites: the influence of carbon on the oxygen evolution activity. J. Electrochem. Soc. 2015; 162: F579-F586.
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. F579-F586
-
-
Mohamed, R.1
Cheng, X.2
Fabbri, E.3
Levecque, P.4
Koetz, R.5
Conrad, O.6
Schmidt, T.J.7
-
244
-
-
84940196105
-
Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies
-
Seo MH, Park HW, Lee DU, Park MG, Chen Z,. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies. ACS Catal. 2015; 5: 4337-4344.
-
(2015)
ACS Catal.
, vol.5
, pp. 4337-4344
-
-
Seo, M.H.1
Park, H.W.2
Lee, D.U.3
Park, M.G.4
Chen, Z.5
-
247
-
-
84941585029
-
Covalency-reinforced oxygen evolution reaction catalyst
-
Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S,. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 2015; 6: 8249.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8249
-
-
Yagi, S.1
Yamada, I.2
Tsukasaki, H.3
Seno, A.4
Murakami, M.5
Fujii, H.6
Chen, H.7
Umezawa, N.8
Abe, H.9
Nishiyama, N.10
Mori, S.11
-
249
-
-
84929338702
-
3 - δ-multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction
-
3-δ-multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction. Carbon 2015; 90: 122-129.
-
(2015)
Carbon
, vol.90
, pp. 122-129
-
-
Zhao, H.1
Chen, C.2
Chen, D.3
Saccoccio, M.4
Wang, J.5
Gao, Y.6
Wan, T.H.7
Ciucci, F.8
-
250
-
-
84939609138
-
High activity and durability of novel perovskite electrocatalysts for water oxidation
-
Zhou W, Zhao M, Liang F, Smith SC, Zhu Z,. High activity and durability of novel perovskite electrocatalysts for water oxidation. Mater. Horiz. 2015; 2: 495-501.
-
(2015)
Mater. Horiz.
, vol.2
, pp. 495-501
-
-
Zhou, W.1
Zhao, M.2
Liang, F.3
Smith, S.C.4
Zhu, Z.5
-
251
-
-
85003587692
-
Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction
-
1500187
-
Xu X, Su C, Zhou W, Zhu Y, Chen Y, Shao Z,. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 2016; 3 1500187:.
-
(2016)
Adv. Sci.
, vol.3
-
-
Xu, X.1
Su, C.2
Zhou, W.3
Zhu, Y.4
Chen, Y.5
Shao, Z.6
-
252
-
-
84961286132
-
3n + 1 (n = 1, 2, 3, and) electrocatalysts for oxygen reduction and evolution reactions in alkaline media
-
3n + 1 (n = 1, 2, 3, and) electrocatalysts for oxygen reduction and evolution reactions in alkaline media. Chem. Eur. J. 2016; 22: 2719-2727.
-
(2016)
Chem. Eur. J.
, vol.22
, pp. 2719-2727
-
-
Yu, J.1
Sunarso, J.2
Zhu, Y.3
Xu, X.4
Ran, R.5
Zhou, W.6
Shao, Z.7
-
253
-
-
84942279892
-
Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices
-
Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F,. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015; 115: 9869-9921.
-
(2015)
Chem. Rev.
, vol.115
, pp. 9869-9921
-
-
Chen, D.1
Chen, C.2
Baiyee, Z.M.3
Shao, Z.4
Ciucci, F.5
-
254
-
-
84946811485
-
Recent advances of lanthanum-based perovskite oxides for catalysis
-
Zhu H, Zhang P, Dai S,. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015; 5: 6370-6385.
-
(2015)
ACS Catal.
, vol.5
, pp. 6370-6385
-
-
Zhu, H.1
Zhang, P.2
Dai, S.3
-
255
-
-
84946867207
-
Rising again: Opportunities and challenges for platinum-free electrocatalysts
-
Abbas MA, Bang JH,. Rising again: opportunities and challenges for platinum-free electrocatalysts. Chem. Mater. 2015; 27: 7218-7235.
-
(2015)
Chem. Mater.
, vol.27
, pp. 7218-7235
-
-
Abbas, M.A.1
Bang, J.H.2
-
256
-
-
84954373879
-
Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media
-
Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G,. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chem. Asian J. 2016; 11: 10-21.
-
(2016)
Chem. Asian J.
, vol.11
, pp. 10-21
-
-
Gupta, S.1
Kellogg, W.2
Xu, H.3
Liu, X.4
Cho, J.5
Wu, G.6
-
257
-
-
84893912538
-
Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes
-
Wang Z-L, Xu D, Xu J-J, Zhang X-B,. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014; 43: 7746-7786.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7746-7786
-
-
Wang, Z.-L.1
Xu, D.2
Xu, J.-J.3
Zhang, X.-B.4
-
258
-
-
84928942518
-
Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
-
Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y,. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015; 8: 1404-1427.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1404-1427
-
-
Hong, W.T.1
Risch, M.2
Stoerzinger, K.A.3
Grimaud, A.4
Suntivich, J.5
Shao-Horn, Y.6
-
259
-
-
84962138888
-
Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions
-
Zhu Y, Zhou W, Yu J, Chen Y, Liu M, Shao Z,. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016. doi: 10.1021/acs.chemmater.5b04457.
-
(2016)
Chem. Mater.
-
-
Zhu, Y.1
Zhou, W.2
Yu, J.3
Chen, Y.4
Liu, M.5
Shao, Z.6
-
260
-
-
80051809046
-
Universality in oxygen evolution electrocatalysis on oxide surfaces
-
Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J,. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 2011; 3: 1159-1165.
-
(2011)
Chem Cat Chem
, vol.3
, pp. 1159-1165
-
-
Man, I.C.1
Su, H.-Y.2
Calle-Vallejo, F.3
Hansen, H.A.4
Martínez, J.I.5
Inoglu, N.G.6
Kitchin, J.7
Jaramillo, T.F.8
Nørskov, J.K.9
Rossmeisl, J.10
-
261
-
-
84923073605
-
Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions
-
Mueller DN, Machala ML, Bluhm H, Chueh WC,. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 2015; 6: 6097.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6097
-
-
Mueller, D.N.1
Machala, M.L.2
Bluhm, H.3
Chueh, W.C.4
-
262
-
-
82755165161
-
2-Pt interfaces
-
2-Pt interfaces. Science 2011; 334: 1256-1260.
-
(2011)
Science
, vol.334
, pp. 1256-1260
-
-
Subbaraman, R.1
Tripkovic, D.2
Strmcnik, D.3
Chang, K.-C.4
Uchimura, M.5
Paulikas, A.P.6
Stamenkovic, V.7
Markovic, N.M.8
-
263
-
-
84907201012
-
Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting
-
Rausch B, Symes MD, Chisholm G, Cronin L,. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014; 345: 1326-1330.
-
(2014)
Science
, vol.345
, pp. 1326-1330
-
-
Rausch, B.1
Symes, M.D.2
Chisholm, G.3
Cronin, L.4
-
264
-
-
84907428372
-
Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
-
Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M,. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014; 345: 1593-1596.
-
(2014)
Science
, vol.345
, pp. 1593-1596
-
-
Luo, J.1
Im, J.-H.2
Mayer, M.T.3
Schreier, M.4
Nazeeruddin, M.K.5
Park, N.-G.6
Tilley, S.D.7
Fan, H.J.8
Grätzel, M.9
-
265
-
-
76849102552
-
Recent progress in alkaline water electrolysis for hydrogen production and applications
-
Zeng K, Zhang D,. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010; 36: 307-326.
-
(2010)
Prog. Energy Combust. Sci.
, vol.36
, pp. 307-326
-
-
Zeng, K.1
Zhang, D.2
-
266
-
-
0019558140
-
Electrodes for alkaline water electrolysis
-
Hall DE,. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 1981; 128: 740-746.
-
(1981)
J. Electrochem. Soc.
, vol.128
, pp. 740-746
-
-
Hall, D.E.1
-
267
-
-
84870987808
-
Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions
-
Vrubel H, Hu XL,. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 2012; 51: 12703-12706.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 12703-12706
-
-
Vrubel, H.1
Hu, X.L.2
-
268
-
-
84903703206
-
2 nanosheets as effective electrocatalysts for hydrogen evolution reaction
-
2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2014; 2: 11358-11364.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 11358-11364
-
-
Zhou, W.J.1
Hou, D.M.2
Sang, Y.H.3
Yao, S.H.4
Zhou, J.5
Li, G.Q.6
Li, L.G.7
Liu, H.8
Chen, S.W.9
-
269
-
-
85027917212
-
Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electrocatalytic activity for hydrogen evolution reaction
-
Tavakkoli M, Kallio T, Reynaud O, Nasibulin AG, Johans C, Sainio J, Jiang H, Kauppinen EI, Laasonen K,. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 2015; 54: 4535-4538.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 4535-4538
-
-
Tavakkoli, M.1
Kallio, T.2
Reynaud, O.3
Nasibulin, A.G.4
Johans, C.5
Sainio, J.6
Jiang, H.7
Kauppinen, E.I.8
Laasonen, K.9
-
270
-
-
84922762704
-
Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction
-
Liu Y, Li G-D, Yuan L, Ge L, Ding H, Wang D, Zou X,. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale 2015; 7: 3130-3136.
-
(2015)
Nanoscale
, vol.7
, pp. 3130-3136
-
-
Liu, Y.1
Li, G.-D.2
Yuan, L.3
Ge, L.4
Ding, H.5
Wang, D.6
Zou, X.7
-
271
-
-
84930196998
-
WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction
-
Fan X, Zhou H, Guo X,. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 2015; 9: 5125-5134.
-
(2015)
ACS Nano
, vol.9
, pp. 5125-5134
-
-
Fan, X.1
Zhou, H.2
Guo, X.3
-
272
-
-
84919797567
-
Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values
-
Shi J, Pu Z, Liu Q, Asiri AM, Hu J, Sun X,. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim. Acta 2015; 154: 345-351.
-
(2015)
Electrochim. Acta
, vol.154
, pp. 345-351
-
-
Shi, J.1
Pu, Z.2
Liu, Q.3
Asiri, A.M.4
Hu, J.5
Sun, X.6
-
273
-
-
84904570870
-
Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction
-
Xiao P, Sk MA, Thia L, Ge XM, Lim RJ, Wang JY, Lim KH, Wang X,. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014; 7: 2624-2629.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2624-2629
-
-
Xiao, P.1
Sk, M.A.2
Thia, L.3
Ge, X.M.4
Lim, R.J.5
Wang, J.Y.6
Lim, K.H.7
Wang, X.8
-
274
-
-
84909944525
-
Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity
-
Liang YH, Liu Q, Asiri AM, Sun XP, Luo YL,. Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014; 4: 4065-4069.
-
(2014)
ACS Catal.
, vol.4
, pp. 4065-4069
-
-
Liang, Y.H.1
Liu, Q.2
Asiri, A.M.3
Sun, X.P.4
Luo, Y.L.5
-
275
-
-
84911441093
-
2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions
-
2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014; 6: 13440-13445.
-
(2014)
Nanoscale
, vol.6
, pp. 13440-13445
-
-
Jiang, P.1
Liu, Q.2
Sun, X.3
-
276
-
-
84927717607
-
High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles
-
Xing Z, Liu Q, Asiri MA, Sun X,. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015; 5: 145-149.
-
(2015)
ACS Catal.
, vol.5
, pp. 145-149
-
-
Xing, Z.1
Liu, Q.2
Asiri, M.A.3
Sun, X.4
-
277
-
-
84955309305
-
Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution
-
Feng Y, Yu X-Y, Paik U,. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem. Commun. 2016; 52: 1633-1636.
-
(2016)
Chem. Commun.
, vol.52
, pp. 1633-1636
-
-
Feng, Y.1
Yu, X.-Y.2
Paik, U.3
-
278
-
-
84931470009
-
1 - XP nanocubes for electrochemical hydrogen evolution
-
1-xP nanocubes for electrochemical hydrogen evolution. Nanoscale 2015; 7: 11055-11062.
-
(2015)
Nanoscale
, vol.7
, pp. 11055-11062
-
-
Hao, J.1
Yang, W.2
Zhang, Z.3
Tang, J.4
-
279
-
-
84915763791
-
2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction
-
2 nanosheets with ultrahigh hydrogen evolution reaction in water reduction. Adv. Funct. Mater. 2014; 24: 6123-6129.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 6123-6129
-
-
Geng, X.M.1
Wu, W.2
Li, N.3
Sun, W.W.4
Armstrong, J.5
Al-Hilo, A.6
Brozak, M.7
Cui, J.B.8
Chen, T.P.9
-
280
-
-
84955633311
-
x chalcogels as pH-universal catalysts for the hydrogen evolution reaction
-
x chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016; 15: 197-203.
-
(2016)
Nat. Mater.
, vol.15
, pp. 197-203
-
-
Staszak-Jirkovsky, J.1
Malliakas, C.D.2
Lopes, P.P.3
Danilovic, N.4
Kota, S.S.5
Chang, K.-C.6
Genorio, B.7
Strmcnik, D.8
Stamenkovic, V.R.9
Kanatzidis, M.G.10
Markovic, N.M.11
-
281
-
-
80052203149
-
Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
-
McKone JR, Warren EL, Bierman MJ, Boettcher SW, Brunschwig BS, Lewis NS, Gray HB,. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011; 4: 3573-3583.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3573-3583
-
-
McKone, J.R.1
Warren, E.L.2
Bierman, M.J.3
Boettcher, S.W.4
Brunschwig, B.S.5
Lewis, N.S.6
Gray, H.B.7
-
282
-
-
84928798815
-
Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
-
Lu Q, Hutchings GS, Yu W, Zhou Y, Forest RV, Tao R, Rosen J, Yonemoto BT, Cao Z, Zheng H, Xiao JQ, Jiao F, Chen JG,. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015; 6: 6567.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6567
-
-
Lu, Q.1
Hutchings, G.S.2
Yu, W.3
Zhou, Y.4
Forest, R.V.5
Tao, R.6
Rosen, J.7
Yonemoto, B.T.8
Cao, Z.9
Zheng, H.10
Xiao, J.Q.11
Jiao, F.12
Chen, J.G.13
-
283
-
-
84873404226
-
Ni-Mo nanopowders for efficient electrochemical hydrogen evolution
-
McKone JR, Sadtler BF, Werlang CA, Lewis NS, Gray HB,. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013; 3: 166-169.
-
(2013)
ACS Catal.
, vol.3
, pp. 166-169
-
-
McKone, J.R.1
Sadtler, B.F.2
Werlang, C.A.3
Lewis, N.S.4
Gray, H.B.5
-
284
-
-
84942874013
-
Mo doped porous Ni-Cu alloy as cathode for hydrogen evolution reaction in alkaline solution
-
Yu L, Lei T, Nan B, Kang J, Jiang Y, He Y, Liu CT,. Mo doped porous Ni-Cu alloy as cathode for hydrogen evolution reaction in alkaline solution. RSC Adv. 2015; 5: 82078-82086.
-
(2015)
RSC Adv.
, vol.5
, pp. 82078-82086
-
-
Yu, L.1
Lei, T.2
Nan, B.3
Kang, J.4
Jiang, Y.5
He, Y.6
Liu, C.T.7
-
285
-
-
84901649639
-
Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution
-
Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ,. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014; 8: 5290-5296.
-
(2014)
ACS Nano
, vol.8
, pp. 5290-5296
-
-
Zheng, Y.1
Jiao, Y.2
Li, L.H.3
Xing, T.4
Chen, Y.5
Jaroniec, M.6
Qiao, S.Z.7
-
286
-
-
84899629076
-
Hydrogen evolution by a metal-free electrocatalyst
-
Zheng Y, Jiao Y, Zhu YH, Li LH, Han Y, Chen Y, Du AJ, Jaroniec MSZ, Qiao SZ,. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014; 5: 3783.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3783
-
-
Zheng, Y.1
Jiao, Y.2
Zhu, Y.H.3
Li, L.H.4
Han, Y.5
Chen, Y.6
Du, A.J.7
Jaroniec, M.S.Z.8
Qiao, S.Z.9
-
287
-
-
84907306518
-
Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
-
Gong M, Zhou W, Tsai MC, Zhou JG, Guan MY, Lin MC, Zhang B, Hu YF, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai HJ,. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014; 5: 4695.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4695
-
-
Gong, M.1
Zhou, W.2
Tsai, M.C.3
Zhou, J.G.4
Guan, M.Y.5
Lin, M.C.6
Zhang, B.7
Hu, Y.F.8
Wang, D.Y.9
Yang, J.10
Pennycook, S.J.11
Hwang, B.J.12
Dai, H.J.13
-
288
-
-
84923564759
-
In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution
-
Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y,. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015; 137: 2688-2694.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2688-2694
-
-
Jin, H.1
Wang, J.2
Su, D.3
Wei, Z.4
Pang, Z.5
Wang, Y.6
-
289
-
-
84991200039
-
Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction
-
Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J,. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016; 10: 684-694.
-
(2016)
ACS Nano
, vol.10
, pp. 684-694
-
-
Zhang, H.1
Ma, Z.2
Duan, J.3
Liu, H.4
Liu, G.5
Wang, T.6
Chang, K.7
Li, M.8
Shi, L.9
Meng, X.10
Wu, K.11
Ye, J.12
-
290
-
-
85001212632
-
-
unpublished results
-
Xu X, Chen Y, Zhou W, Zhu Z, Su C, Liu M, Shao Z,. A perovskite electrocatalyst for efficient hydrogen evolution reaction, unpublished results. 2016.
-
(2016)
A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction
-
-
Xu, X.1
Chen, Y.2
Zhou, W.3
Zhu, Z.4
Su, C.5
Liu, M.6
Shao, Z.7
-
291
-
-
84946615287
-
Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells
-
Kinoshita T, Nonomura K, Jeon NJ, Giordano F, Abate A, Uchida S, Kubo T, Seok SI, Nazeeruddin MK, Hagfeldt A, Grätzel M, Segawa H,. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nat. Commun. 2015; 6: 8834. doi: 10.1038/ncomms9834.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8834
-
-
Kinoshita, T.1
Nonomura, K.2
Jeon, N.J.3
Giordano, F.4
Abate, A.5
Uchida, S.6
Kubo, T.7
Seok, S.I.8
Nazeeruddin, M.K.9
Hagfeldt, A.10
Grätzel, M.11
Segawa, H.12
-
292
-
-
84926244613
-
Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes
-
Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z,. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015; 18: 155-162.
-
(2015)
Mater. Today
, vol.18
, pp. 155-162
-
-
Ye, M.1
Wen, X.2
Wang, M.3
Iocozzia, J.4
Zhang, N.5
Lin, C.6
Lin, Z.7
-
293
-
-
84940474218
-
High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor
-
Freitag M, Daniel Q, Pazoki M, Sveinbjörnsson K, Zhang J, Sun L, Hagfeldt A, Boschloo G,. High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor. Energy Environ. Sci. 2015; 8: 2634-2637.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2634-2637
-
-
Freitag, M.1
Daniel, Q.2
Pazoki, M.3
Sveinbjörnsson, K.4
Zhang, J.5
Sun, L.6
Hagfeldt, A.7
Boschloo, G.8
-
294
-
-
70149102912
-
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
-
Kojima A, Teshima K, Shirai Y, Miyasaka T,. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009; 131: 6050-6051.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6050-6051
-
-
Kojima, A.1
Teshima, K.2
Shirai, Y.3
Miyasaka, T.4
-
295
-
-
84866136229
-
Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
-
Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G,. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012; 2: 591. doi: 10.1038/srep00591.
-
(2012)
Sci. Rep.
, vol.2
, pp. 591
-
-
Kim, H.-S.1
Lee, C.-R.2
Im, J.-H.3
Lee, K.-B.4
Moehl, T.5
Marchioro, A.6
Moon, S.-J.7
Humphry-Baker, R.8
Yum, J.-H.9
Moser, J.E.10
Grätzel, M.11
Park, N.-G.12
-
296
-
-
84905902495
-
Interface engineering of highly efficient perovskite solar cells
-
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, Hong Z, You J, Liu Y, Yang Y,. Interface engineering of highly efficient perovskite solar cells. Science 2014; 345: 542-546.
-
(2014)
Science
, vol.345
, pp. 542-546
-
-
Zhou, H.1
Chen, Q.2
Li, G.3
Luo, S.4
Song, T.5
Duan, H.-S.6
Hong, Z.7
You, J.8
Liu, Y.9
Yang, Y.10
-
297
-
-
84874407045
-
3-based dye-sensitized solar cells
-
3-based dye-sensitized solar cells. ACS Nano 2013; 7: 1027-1035.
-
(2013)
ACS Nano
, vol.7
, pp. 1027-1035
-
-
Shin, S.S.1
Kim, J.S.2
Suk, J.H.3
Lee, K.D.4
Kim, D.W.5
Park, J.H.6
Cho, I.S.7
Hong, K.S.8
Kim, J.Y.9
-
298
-
-
84868195671
-
Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
-
Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ,. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012; 338: 643-647.
-
(2012)
Science
, vol.338
, pp. 643-647
-
-
Lee, M.M.1
Teuscher, J.2
Miyasaka, T.3
Murakami, T.N.4
Snaith, H.J.5
-
299
-
-
84922586427
-
Compositional engineering of perovskite materials for high-performance solar cells
-
Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI,. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015; 517: 476-480.
-
(2015)
Nature
, vol.517
, pp. 476-480
-
-
Jeon, N.J.1
Noh, J.H.2
Yang, W.S.3
Kim, Y.C.4
Ryu, S.5
Seo, J.6
Seok, S.I.7
-
300
-
-
84887725438
-
Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates
-
Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ,. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013; 4: 2761. doi: 10.1038/ncomms3761.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2761
-
-
Docampo, P.1
Ball, J.M.2
Darwich, M.3
Eperon, G.E.4
Snaith, H.J.5
-
301
-
-
84937485231
-
Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
-
Wang W, Tadé MO, Shao ZP,. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015; 44: 5371-5408.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5371-5408
-
-
Wang, W.1
Tadé, M.O.2
Shao, Z.P.3
-
303
-
-
84897603021
-
Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells
-
Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ,. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014; 7: 982-988.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 982-988
-
-
Eperon, G.E.1
Stranks, S.D.2
Menelaou, C.3
Johnston, M.B.4
Herz, L.M.5
Snaith, H.J.6
-
304
-
-
84904403218
-
A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
-
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H,. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014; 345: 295-298.
-
(2014)
Science
, vol.345
, pp. 295-298
-
-
Mei, A.1
Li, X.2
Liu, L.3
Ku, Z.4
Liu, T.5
Rong, Y.6
Xu, M.7
Hu, M.8
Chen, J.9
Yang, Y.10
Grätzel, M.11
Han, H.12
-
305
-
-
84901937010
-
Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells
-
Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG,. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014; 136: 8094-8099.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8094-8099
-
-
Hao, F.1
Stoumpos, C.C.2
Chang, R.P.H.3
Kanatzidis, M.G.4
-
306
-
-
84903520837
-
Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
-
Noel NK, Stranks SD, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A, Sadhanala A, Eperon GE, Pathak SK, Johnston MB, Petrozza A, Herza LM, Snaith HJ,. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014; 7: 3061-3068.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3061-3068
-
-
Noel, N.K.1
Stranks, S.D.2
Abate, A.3
Wehrenfennig, C.4
Guarnera, S.5
Haghighirad, A.6
Sadhanala, A.7
Eperon, G.E.8
Pathak, S.K.9
Johnston, M.B.10
Petrozza, A.11
Herza, L.M.12
Snaith, H.J.13
-
307
-
-
84876029268
-
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells
-
Noh JH, Im SH, Heo JH, Mandal TN, Seok SI,. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013; 13: 1764-1769.
-
(2013)
Nano Lett.
, vol.13
, pp. 1764-1769
-
-
Noh, J.H.1
Im, S.H.2
Heo, J.H.3
Mandal, T.N.4
Seok, S.I.5
-
308
-
-
84959462771
-
A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
-
McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ,. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016; 351: 151-155.
-
(2016)
Science
, vol.351
, pp. 151-155
-
-
McMeekin, D.P.1
Sadoughi, G.2
Rehman, W.3
Eperon, G.E.4
Saliba, M.5
Hörantner, M.T.6
Haghighirad, A.7
Sakai, N.8
Korte, L.9
Rech, B.10
Johnston, M.B.11
Herz, L.M.12
Snaith, H.J.13
-
309
-
-
84885817313
-
3
-
3. Science 2013; 342: 344-347.
-
(2013)
Science
, vol.342
, pp. 344-347
-
-
Xing, G.H.1
Mathews, N.2
Sun, S.Y.3
Lim, S.S.4
Lam, Y.M.5
Grätzel, M.6
Mhaisalkar, S.7
Sum, T.C.8
-
310
-
-
84885692931
-
Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
-
Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MGP, Leijtens T, Herz LM, Petrozza A, Snaith HJ,. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013; 342: 341-344.
-
(2013)
Science
, vol.342
, pp. 341-344
-
-
Stranks, S.D.1
Eperon, G.E.2
Grancini, G.3
Menelaou, C.4
Alcocer, M.G.P.5
Leijtens, T.6
Herz, L.M.7
Petrozza, A.8
Snaith, H.J.9
-
312
-
-
84929000469
-
Impact of microstructure on local carrier lifetime in perovskite solar cells
-
deQuilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginger DS,. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015; 348: 683-686.
-
(2015)
Science
, vol.348
, pp. 683-686
-
-
DeQuilettes, D.W.1
Vorpahl, S.M.2
Stranks, S.D.3
Nagaoka, H.4
Eperon, G.E.5
Ziffer, M.E.6
Snaith, H.J.7
Ginger, D.S.8
-
314
-
-
84880507645
-
Sequential deposition as a route to high-performance perovskite-sensitized solar cells
-
Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M,. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013; 499: 316-319.
-
(2013)
Nature
, vol.499
, pp. 316-319
-
-
Burschka, J.1
Pellet, N.2
Moon, S.-J.3
Humphry-Baker, R.4
Gao, P.5
Nazeeruddin, M.K.6
Grätzel, M.7
-
315
-
-
84884411335
-
Efficient planar heterojunction perovskite solar cells by vapour deposition
-
Liu MZ, Johnston MB, Snaith HJ,. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013; 501: 395-398.
-
(2013)
Nature
, vol.501
, pp. 395-398
-
-
Liu, M.Z.1
Johnston, M.B.2
Snaith, H.J.3
-
316
-
-
84906951623
-
A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells
-
Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L,. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 2014; 53: 9898-9903.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 9898-9903
-
-
Xiao, M.1
Huang, F.2
Huang, W.3
Dkhissi, Y.4
Zhu, Y.5
Etheridge, J.6
Gray-Weale, A.7
Bach, U.8
Cheng, Y.-B.9
Spiccia, L.10
-
317
-
-
84903954327
-
Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells
-
Chen Q, Zhou H, Song T-B, Luo S, Hong Z, Duan H-S, Dou L, Liu Y, Yang Y,. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014; 14: 4158-4163.
-
(2014)
Nano Lett.
, vol.14
, pp. 4158-4163
-
-
Chen, Q.1
Zhou, H.2
Song, T.-B.3
Luo, S.4
Hong, Z.5
Duan, H.-S.6
Dou, L.7
Liu, Y.8
Yang, Y.9
-
318
-
-
84921890919
-
High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
-
Nie W, Tsai H, Asadpour R, Blancon J-C, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang H-L, Mohite AD,. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015; 347: 522-525.
-
(2015)
Science
, vol.347
, pp. 522-525
-
-
Nie, W.1
Tsai, H.2
Asadpour, R.3
Blancon, J.-C.4
Neukirch, A.J.5
Gupta, G.6
Crochet, J.J.7
Chhowalla, M.8
Tretiak, S.9
Alam, M.A.10
Wang, H.-L.11
Mohite, A.D.12
-
319
-
-
84928951451
-
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells
-
Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI,. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014; 13: 897-903.
-
(2014)
Nat. Mater.
, vol.13
, pp. 897-903
-
-
Jeon, N.J.1
Noh, J.H.2
Kim, Y.C.3
Yang, W.S.4
Ryu, S.5
Seok, S.I.6
-
321
-
-
84902125882
-
Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells
-
Liang P-W, Liao C-Y, Chueh C-C, Zuo F, Williams ST, Xin X-K, Lin J, Jen AKY,. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014; 26: 3748-3754.
-
(2014)
Adv. Mater.
, vol.26
, pp. 3748-3754
-
-
Liang, P.-W.1
Liao, C.-Y.2
Chueh, C.-C.3
Zuo, F.4
Williams, S.T.5
Xin, X.-K.6
Lin, J.7
Jen, A.K.Y.8
-
322
-
-
84906222659
-
2 for highly reproducible planar-structured perovskite solar cells via sequential deposition
-
2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014; 7: 2934-2938.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2934-2938
-
-
Wu, Y.1
Islam, A.2
Yang, X.3
Qin, C.4
Liu, J.5
Zhang, K.6
Peng, W.7
Han, L.8
-
323
-
-
84892688321
-
Planar heterojunction perovskite solar cells via vapor-assisted solution process
-
Chen Q, Zhou H, Hong Z, Luo S, Duan H-S, Wang H-H, Liu Y, Li G, Yang Y,. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014; 136: 622-625.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 622-625
-
-
Chen, Q.1
Zhou, H.2
Hong, Z.3
Luo, S.4
Duan, H.-S.5
Wang, H.-H.6
Liu, Y.7
Li, G.8
Yang, Y.9
-
324
-
-
84948412675
-
Lead-free germanium iodide perovskite materials for photovoltaic applications
-
Krishnamoorthy T, Ding H, Yan C, Leong WL, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar SG,. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015; 3: 23829-23832.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 23829-23832
-
-
Krishnamoorthy, T.1
Ding, H.2
Yan, C.3
Leong, W.L.4
Baikie, T.5
Zhang, Z.6
Sherburne, M.7
Li, S.8
Asta, M.9
Mathews, N.10
Mhaisalkar, S.G.11
-
325
-
-
84959463275
-
Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites
-
Lyu M, Yun J, Cai M, Jiao Y, Bernhardt PV, Zhang M, Wang Q, Du A, Wang H, Liu G, Wang L,. Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2015; 1-11. doi: 10.1007/s12274-015-0948-y.
-
(2015)
Nano Res.
, pp. 1-11
-
-
Lyu, M.1
Yun, J.2
Cai, M.3
Jiao, Y.4
Bernhardt, P.V.5
Zhang, M.6
Wang, Q.7
Du, A.8
Wang, H.9
Liu, G.10
Wang, L.11
-
326
-
-
84905457611
-
Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: A DFT analysis
-
Fujisawa J, Giorgi G,. Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: a DFT analysis. Phys. Chem. Chem. Phys. 2014; 16: 17955-17959.
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, pp. 17955-17959
-
-
Fujisawa, J.1
Giorgi, G.2
-
327
-
-
84890255407
-
3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells
-
3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014; 2: 705-710.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 705-710
-
-
Niu, G.1
Li, W.2
Meng, F.3
Wang, L.4
Dong, H.5
Qiu, Y.6
-
328
-
-
84947704773
-
Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers
-
Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Gratzel M, Han L,. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015; 350: 944-948.
-
(2015)
Science
, vol.350
, pp. 944-948
-
-
Chen, W.1
Wu, Y.2
Yue, Y.3
Liu, J.4
Zhang, W.5
Yang, X.6
Chen, H.7
Bi, E.8
Ashraful, I.9
Gratzel, M.10
Han, L.11
-
329
-
-
84874736457
-
3 perovskite nanoparticles for high efficiency dye-sensitized solar cells
-
3 perovskite nanoparticles for high efficiency dye-sensitized solar cells. ChemSusChem 2013; 6: 449-454.
-
(2013)
ChemSusChem
, vol.6
, pp. 449-454
-
-
Kim, D.W.1
Shin, S.S.2
Lee, S.3
Cho, I.S.4
Kim, D.H.5
Lee, C.W.6
Jung, H.S.7
Hong, K.W.8
-
330
-
-
65249139389
-
3 (M = Ca, Sr, and Ba) perovskite oxides
-
3 (M = Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C 2009; 113: 4386-4394.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 4386-4394
-
-
Li, Y.1
Gao, X.P.2
Li, G.R.3
Pan, G.L.4
Yan, T.L.5
Zhu, H.Y.6
-
331
-
-
84889604139
-
Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
-
Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo EM, Akbashev AR, Davies PK, Spanier JE, Rappe AM,. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013; 503: 509-512.
-
(2013)
Nature
, vol.503
, pp. 509-512
-
-
Grinberg, I.1
West, D.V.2
Torres, M.3
Gou, G.4
Stein, D.M.5
Wu, L.6
Chen, G.7
Gallo, E.M.8
Akbashev, A.R.9
Davies, P.K.10
Spanier, J.E.11
Rappe, A.M.12
|