메뉴 건너뛰기




Volumn 11, Issue 3, 2016, Pages 338-369

Perovskite materials in energy storage and conversion

Author keywords

hydrogen evolution reaction; oxyfuel combustion; oxygen reduction evolution reactions; perovskite; solar cell; solid oxide fuel cell

Indexed keywords

COMBUSTION; ELECTROCATALYSTS; ELECTROLYTIC REDUCTION; ENERGY STORAGE; FUEL CELLS; OXYGEN; PEROVSKITE; PEROVSKITE SOLAR CELLS; SOLAR CELLS; SOLAR ENERGY; SOLAR POWER GENERATION; SOLID OXIDE FUEL CELLS (SOFC);

EID: 84992305673     PISSN: 19322135     EISSN: 19322143     Source Type: Journal    
DOI: 10.1002/apj.2000     Document Type: Review
Times cited : (95)

References (333)
  • 6
    • 27744607787 scopus 로고    scopus 로고
    • Combustion characteristics of coal in a mixture of oxygen and recycled flue gas
    • Tan Y, Croiset E, Douglas MA, Thambimuthu KV,. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel 2006; 85: 507-512.
    • (2006) Fuel , vol.85 , pp. 507-512
    • Tan, Y.1    Croiset, E.2    Douglas, M.A.3    Thambimuthu, K.V.4
  • 7
    • 0036771677 scopus 로고    scopus 로고
    • Thermodynamic comparison of fuel cells to the Carnot cycle
    • Lutz AE, Larson RS, Keller JO,. Thermodynamic comparison of fuel cells to the Carnot cycle. Int. J. Hydrogen Energy 2002; 27: 1103-1111.
    • (2002) Int. J. Hydrogen Energy , vol.27 , pp. 1103-1111
    • Lutz, A.E.1    Larson, R.S.2    Keller, J.O.3
  • 8
    • 0141549491 scopus 로고    scopus 로고
    • Fuel cell systems: Efficient, flexible energy conversion for the 21st century
    • Ellis MW, Spakovsky MRV, Nelson DJ,. Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE 2001; 89: 1808-1818.
    • (2001) Proc. IEEE , vol.89 , pp. 1808-1818
    • Ellis, M.W.1    Spakovsky, M.R.V.2    Nelson, D.J.3
  • 9
    • 36749050496 scopus 로고    scopus 로고
    • Biodiesel as an alternative motor fuel: Production and policies in the European Union
    • Bozbas K,. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable and Sustainable Energy Rev. 2008; 12: 542-552.
    • (2008) Renewable and Sustainable Energy Rev. , vol.12 , pp. 542-552
    • Bozbas, K.1
  • 11
    • 0034744414 scopus 로고    scopus 로고
    • A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles
    • Brown LF,. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int. J. Hydrogen Energy 2001; 26: 381-397.
    • (2001) Int. J. Hydrogen Energy , vol.26 , pp. 381-397
    • Brown, L.F.1
  • 12
    • 0034744415 scopus 로고    scopus 로고
    • Hydrogen from hydrocarbon fuels for fuel cells
    • Ahmed S, Krumpelt M,. Hydrogen from hydrocarbon fuels for fuel cells. Int. J. Hydrogen Energy 2001; 26: 291-301.
    • (2001) Int. J. Hydrogen Energy , vol.26 , pp. 291-301
    • Ahmed, S.1    Krumpelt, M.2
  • 13
    • 76849102552 scopus 로고    scopus 로고
    • Recent progress in alkaline water electrolysis for hydrogen production and applications
    • Zeng K, Zhang D,. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010; 36: 307-326.
    • (2010) Prog. Energy Combust. Sci. , vol.36 , pp. 307-326
    • Zeng, K.1    Zhang, D.2
  • 16
    • 84888357540 scopus 로고    scopus 로고
    • Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance
    • Chen X, Zhao B, Cai Y, Tade MO, Shao Z,. Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale 2013; 5: 12589-12597.
    • (2013) Nanoscale , vol.5 , pp. 12589-12597
    • Chen, X.1    Zhao, B.2    Cai, Y.3    Tade, M.O.4    Shao, Z.5
  • 17
    • 85001220789 scopus 로고    scopus 로고
    • Synthesis gas production in oxy-carbon dioxide reforming of methane over perovskite catalysts
    • Milka G, Sanjay SP,. Synthesis gas production in oxy-carbon dioxide reforming of methane over perovskite catalysts. Instit. Technol. Nirma University, Ahmedabad 2011; 382: 1-5.
    • (2011) Instit. Technol. Nirma University, Ahmedabad , vol.382 , pp. 1-5
    • Milka, G.1    Sanjay, S.P.2
  • 18
    • 0026865510 scopus 로고
    • Rational selection of advanced solid electrolytes for intermediate temperature fuel cells
    • Sammells AF, Cook RL, White JH, Osborne JJ, MacDuff RC,. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ion. 1992; 52: 111-123.
    • (1992) Solid State Ion. , vol.52 , pp. 111-123
    • Sammells, A.F.1    Cook, R.L.2    White, J.H.3    Osborne, J.J.4    MacDuff, R.C.5
  • 19
    • 84924258458 scopus 로고    scopus 로고
    • Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells
    • Sengodan S, Choi S, Jun A, Shin TH, Ju Y-W, Jeong HY, Shin J, Irvine JTS, Kim G,. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 2015; 14: 205-209.
    • (2015) Nat. Mater. , vol.14 , pp. 205-209
    • Sengodan, S.1    Choi, S.2    Jun, A.3    Shin, T.H.4    Ju, Y.-W.5    Jeong, H.Y.6    Shin, J.7    Irvine, J.T.S.8    Kim, G.9
  • 20
    • 84997170349 scopus 로고    scopus 로고
    • 3OCl superionic conductor films for solid-state Li-ion batteries
    • 1500359
    • 3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 2016; 3: 1500359.
    • (2016) Adv. Sci. , vol.3
    • Lü, X.1    Howard, J.W.2    Chen, A.3
  • 23
    • 0000698468 scopus 로고    scopus 로고
    • Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films
    • Shi C, Meidong L, Churong L, Yike Z, Da Costa J,. Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films. Thin Solid Films 2000; 375: 288-291.
    • (2000) Thin Solid Films , vol.375 , pp. 288-291
    • Shi, C.1    Meidong, L.2    Churong, L.3    Yike, Z.4    Da Costa, J.5
  • 24
    • 0034262414 scopus 로고    scopus 로고
    • Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials
    • Yohachi Y, Yasuharu H, Kouichi H, Noboru I,. Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials. Jpn. J. Appl. Phys. 2000; 39: 5593.
    • (2000) Jpn. J. Appl. Phys. , vol.39 , pp. 5593
    • Yohachi, Y.1    Yasuharu, H.2    Kouichi, H.3    Noboru, I.4
  • 27
    • 84926506145 scopus 로고    scopus 로고
    • Anomalously large interface charge in polarity-switchable photovoltaic devices: An indication of mobile ions in organic-inorganic halide perovskites
    • Zhao Y, Liang C, Zhang H, Li D, Tian D, Li G, Jing X, Zhang W, Xiao W, Liu Q, Zhang F, He Z,. Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 2015; 8: 1256-1260.
    • (2015) Energy Environ. Sci. , vol.8 , pp. 1256-1260
    • Zhao, Y.1    Liang, C.2    Zhang, H.3    Li, D.4    Tian, D.5    Li, G.6    Jing, X.7    Zhang, W.8    Xiao, W.9    Liu, Q.10    Zhang, F.11    He, Z.12
  • 29
    • 84954375695 scopus 로고    scopus 로고
    • Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °c determined by electrical conductivity relaxation
    • Niedrig C, Wagner SF, Menesklou W, Baumann S, Ivers-Tiffée E,. Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °C determined by electrical conductivity relaxation. Solid State Ion. 2015; 283: 30-37.
    • (2015) Solid State Ion. , vol.283 , pp. 30-37
    • Niedrig, C.1    Wagner, S.F.2    Menesklou, W.3    Baumann, S.4    Ivers-Tiffée, E.5
  • 30
    • 84876541138 scopus 로고    scopus 로고
    • 3 - δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method
    • 3-δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method. J. Mater. Chem. A 2013; 1: 4871-4878.
    • (2013) J. Mater. Chem. A , vol.1 , pp. 4871-4878
    • Chen, X.1    Jiang, S.P.2
  • 34
    • 84897912533 scopus 로고    scopus 로고
    • 3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution
    • 3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv. Mater. 2014; 26: 2047-2051.
    • (2014) Adv. Mater. , vol.26 , pp. 2047-2051
    • Han, X.1    Cheng, F.2    Zhang, T.3    Yang, J.4    Hu, Y.5    Chen, J.6
  • 35
    • 84870571601 scopus 로고    scopus 로고
    • Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells
    • Dong H, Yu H, Wang X, Zhou Q, Sun J,. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. J. Chem. Technol. Biotechnol. 2013; 88: 774-778.
    • (2013) J. Chem. Technol. Biotechnol. , vol.88 , pp. 774-778
    • Dong, H.1    Yu, H.2    Wang, X.3    Zhou, Q.4    Sun, J.5
  • 37
    • 84925443129 scopus 로고    scopus 로고
    • Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu
    • Cao Y, Lin B, Sun Y, Yang H, Zhang X,. Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. J. Alloys Compd. 2015; 638: 204-213.
    • (2015) J. Alloys Compd. , vol.638 , pp. 204-213
    • Cao, Y.1    Lin, B.2    Sun, Y.3    Yang, H.4    Zhang, X.5
  • 42
    • 84905374169 scopus 로고    scopus 로고
    • Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes
    • Chen Y, Qian B, Hao Y, Liu S, Tadé MO, Shao Z,. Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. J. Membr. Sci. 2014; 470: 102-111.
    • (2014) J. Membr. Sci. , vol.470 , pp. 102-111
    • Chen, Y.1    Qian, B.2    Hao, Y.3    Liu, S.4    Tadé, M.O.5    Shao, Z.6
  • 48
    • 84902674917 scopus 로고    scopus 로고
    • Tin-doped perovskite mixed conducting membrane for efficient air separation
    • Zhang Z, Chen Y, Tadé MO, Hao Y, Liu S, Shao Z,. Tin-doped perovskite mixed conducting membrane for efficient air separation. J. Mater. Chem. A 2014; 2: 9666-9674.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 9666-9674
    • Zhang, Z.1    Chen, Y.2    Tadé, M.O.3    Hao, Y.4    Liu, S.5    Shao, Z.6
  • 49
    • 51449101244 scopus 로고    scopus 로고
    • 5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs
    • 5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Mater. 2008; 56: 4876-4889.
    • (2008) Acta Mater. , vol.56 , pp. 4876-4889
    • Zhang, K.1    Ge, L.2    Ran, R.3    Shao, Z.4    Liu, S.5
  • 51
    • 77549086088 scopus 로고    scopus 로고
    • Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes
    • Diniz da Costa JC
    • Sunarso J, Liu S, Diniz da Costa JC. Structure effect on the oxygen permeation properties of barium bismuth iron oxide membranes. J. Membr. Sci. 2010; 351: 44-49.
    • (2010) J. Membr. Sci. , vol.351 , pp. 44-49
    • Sunarso, J.1    Liu, S.2
  • 57
    • 0035283307 scopus 로고    scopus 로고
    • Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion
    • Shao Z, Dong H, Xiong G, Cong Y, Yang W,. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J. Membr. Sci. 2001; 183: 181-192.
    • (2001) J. Membr. Sci. , vol.183 , pp. 181-192
    • Shao, Z.1    Dong, H.2    Xiong, G.3    Cong, Y.4    Yang, W.5
  • 58
    • 48149104058 scopus 로고    scopus 로고
    • 3 - δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane
    • 3-δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J. Membr. Sci. 2008; 322: 484-490.
    • (2008) J. Membr. Sci. , vol.322 , pp. 484-490
    • Cheng, Y.1    Zhao, H.2    Teng, D.3    Li, F.4    Lu, X.5    Ding, W.6
  • 61
    • 84859137105 scopus 로고    scopus 로고
    • Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production
    • Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S,. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv. 2011; 1: 1661-1676.
    • (2011) RSC Adv. , vol.1 , pp. 1661-1676
    • Zhang, K.1    Sunarso, J.2    Shao, Z.3    Zhou, W.4    Sun, C.5    Wang, S.6    Liu, S.7
  • 63
    • 84929944236 scopus 로고    scopus 로고
    • 3 perovskite and its hollow fibre membrane for air separation and methane conversion reactions
    • 3 perovskite and its hollow fibre membrane for air separation and methane conversion reactions. Sep. Purif. Technol. 2015; 147: 406-413.
    • (2015) Sep. Purif. Technol. , vol.147 , pp. 406-413
    • Meng, B.1    Zhang, H.2    Qin, J.3    Tan, X.4    Ran, R.5    Liu, S.6
  • 66
    • 84903741778 scopus 로고    scopus 로고
    • Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications
    • Middelkoop V, Chen H, Michielsen B, Jacobs M, Syvertsen-Wiig G, Mertens M, Buekenhoudt A, Snijkers F,. Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications. J. Membr. Sci. 2014; 468: 250-258.
    • (2014) J. Membr. Sci. , vol.468 , pp. 250-258
    • Middelkoop, V.1    Chen, H.2    Michielsen, B.3    Jacobs, M.4    Syvertsen-Wiig, G.5    Mertens, M.6    Buekenhoudt, A.7    Snijkers, F.8
  • 68
    • 84946949681 scopus 로고    scopus 로고
    • 2-tolerant oxygen-permeable perovskite-type membranes with high permeability
    • 2-tolerant oxygen-permeable perovskite-type membranes with high permeability. J. Mater. Chem. A 2015; 3: 22564-22573.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 22564-22573
    • Zhu, J.1    Guo, S.2    Chu, Z.3    Jin, W.4
  • 69
    • 2442676340 scopus 로고    scopus 로고
    • Novel cobalt-free oxygen permeable membrane
    • Zhu X, Wang H, Yang W,. Novel cobalt-free oxygen permeable membrane. Chem. Commun. 2004; 1130-1131.
    • (2004) Chem. Commun. , pp. 1130-1131
    • Zhu, X.1    Wang, H.2    Yang, W.3
  • 71
    • 84956708464 scopus 로고    scopus 로고
    • 2 resistance for robust oxygen separation through tantalum-doped perovskite membranes
    • 2 resistance for robust oxygen separation through tantalum-doped perovskite membranes. ChemSusChem 2016; 9: 505-512.
    • (2016) ChemSusChem , vol.9 , pp. 505-512
    • Zhang, C.1    Tian, H.2    Yang, D.3    Sunarso, J.4    Liu, J.5    Liu, S.6
  • 74
    • 84892630182 scopus 로고    scopus 로고
    • Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation
    • Xu D, Dong F, Chen Y, Zhao B, Liu S, Tadé MO, Shao Z,. Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. J. Membr. Sci. 2014; 455: 75-82.
    • (2014) J. Membr. Sci. , vol.455 , pp. 75-82
    • Xu, D.1    Dong, F.2    Chen, Y.3    Zhao, B.4    Liu, S.5    Tadé, M.O.6    Shao, Z.7
  • 76
    • 84876435109 scopus 로고    scopus 로고
    • 3 - δ perovskite membrane for oxygen separation
    • 3-δ perovskite membrane for oxygen separation. Chem. Mater. 2013; 25: 815-817.
    • (2013) Chem. Mater. , vol.25 , pp. 815-817
    • Yi, J.1    Schroeder, M.2    Martin, M.3
  • 79
    • 77954214018 scopus 로고    scopus 로고
    • Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors
    • Zhu X, Li Q, He Y, Cong Y, Yang W,. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors. J. Membr. Sci. 2010; 360: 454-460.
    • (2010) J. Membr. Sci. , vol.360 , pp. 454-460
    • Zhu, X.1    Li, Q.2    He, Y.3    Cong, Y.4    Yang, W.5
  • 83
    • 84908415788 scopus 로고    scopus 로고
    • Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane
    • Zhang Z, Chen D, Chen Y, Hao Y, Tadé MO, Shao Z,. Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. J. Membr. Sci. 2014; 472: 10-18.
    • (2014) J. Membr. Sci. , vol.472 , pp. 10-18
    • Zhang, Z.1    Chen, D.2    Chen, Y.3    Hao, Y.4    Tadé, M.O.5    Shao, Z.6
  • 85
    • 33751182361 scopus 로고    scopus 로고
    • 3 - δ composite membrane under large oxygen partial pressure gradients
    • 3-δ composite membrane under large oxygen partial pressure gradients. J. Membr. Sci. 2006; 286: 22-25.
    • (2006) J. Membr. Sci. , vol.286 , pp. 22-25
    • Wang, B.1    Yi, J.2    Winnubst, L.3    Chen, C.4
  • 86
    • 84856550513 scopus 로고    scopus 로고
    • Design and experimental investigation of oxide ceramic dual-phase membranes
    • Zhu X, Li M, Liu H, Zhang T, Cong Y, Yang W,. Design and experimental investigation of oxide ceramic dual-phase membranes. J. Membr. Sci. 2012; 394-395: 120-130.
    • (2012) J. Membr. Sci. , vol.394-395 , pp. 120-130
    • Zhu, X.1    Li, M.2    Liu, H.3    Zhang, T.4    Cong, Y.5    Yang, W.6
  • 88
    • 84945569028 scopus 로고    scopus 로고
    • Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction
    • Zhang Z, Zhou W, Chen Y, Chen D, Chen J, Liu S, Jin W, Shao Z,. Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction. ACS Appl. Mater. Interfaces 2015; 7: 22918-22926.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 22918-22926
    • Zhang, Z.1    Zhou, W.2    Chen, Y.3    Chen, D.4    Chen, J.5    Liu, S.6    Jin, W.7    Shao, Z.8
  • 89
    • 84874870592 scopus 로고    scopus 로고
    • Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes
    • Liu Y, Zhu X, Li M, Liu H, Cong Y, Yang W,. Stabilization of low-temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes. Angew. Chem. Int. Ed. 2013; 52: 3232-3236.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 3232-3236
    • Liu, Y.1    Zhu, X.2    Li, M.3    Liu, H.4    Cong, Y.5    Yang, W.6
  • 90
    • 84898947062 scopus 로고    scopus 로고
    • 3 - δ ultrathin membrane for highly efficient oxygen separation
    • 3-δ ultrathin membrane for highly efficient oxygen separation. J. Membr. Sci. 2014; 464: 55-60.
    • (2014) J. Membr. Sci. , vol.464 , pp. 55-60
    • He, B.1    Zhang, K.2    Ling, Y.3    Xu, J.4    Zhao, L.5
  • 91
    • 79960015621 scopus 로고    scopus 로고
    • 2 stability and oxygen flux of oxygen permeable membranes
    • 2 stability and oxygen flux of oxygen permeable membranes. J. Membr. Sci. 2011; 378: 10-17.
    • (2011) J. Membr. Sci. , vol.378 , pp. 10-17
    • Schulz, M.1    Kriegel, R.2    Kämpfer, A.3
  • 94
    • 66349092038 scopus 로고    scopus 로고
    • 3 - δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review
    • 3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 2009; 192: 231-246.
    • (2009) J. Power Sources , vol.192 , pp. 231-246
    • Zhou, W.1    Ran, R.2    Shao, Z.P.3
  • 96
    • 77955663829 scopus 로고    scopus 로고
    • Materials challenges toward proton-conducting oxide fuel cells: A critical review
    • Fabbri E, Pergolesi D, Traversa E,. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 2010; 39: 4355-4369.
    • (2010) Chem. Soc. Rev. , vol.39 , pp. 4355-4369
    • Fabbri, E.1    Pergolesi, D.2    Traversa, E.3
  • 97
    • 0037263853 scopus 로고    scopus 로고
    • Solid oxide fuel cells
    • Ormerod RM,. Solid oxide fuel cells. Chem. Soc. Rev. 2003; 32: 17-28.
    • (2003) Chem. Soc. Rev. , vol.32 , pp. 17-28
    • Ormerod, R.M.1
  • 98
    • 0037447659 scopus 로고    scopus 로고
    • Development of interconnect materials for solid oxide fuel cells
    • Zhu WZ, Deevi SC,. Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A 2003; 348: 227-243.
    • (2003) Mater. Sci. Eng. A , vol.348 , pp. 227-243
    • Zhu, W.Z.1    Deevi, S.C.2
  • 104
    • 4544245943 scopus 로고    scopus 로고
    • A high-performance cathode for the next generation of solid-oxide fuel cells
    • Shao ZP, Haile SM,. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004; 431: 170-173.
    • (2004) Nature , vol.431 , pp. 170-173
    • Shao, Z.P.1    Haile, S.M.2
  • 105
    • 52149102715 scopus 로고    scopus 로고
    • 3 - δ as a cathode material for low temperature solid-oxide fuel cell
    • 3-δ as a cathode material for low temperature solid-oxide fuel cell. Electrochem. Commun. 2008; 10: 1647-1651.
    • (2008) Electrochem. Commun. , vol.10 , pp. 1647-1651
    • Zhou, W.1    Shao, Z.P.2    Ran, R.3    Cai, R.4
  • 106
    • 56349129705 scopus 로고    scopus 로고
    • A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 °c
    • Zhou W, Shao ZP, Ran R, Jin WQ, Xu NP,. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 °C. Chem. Commun. 2008; 44: 5791-5793.
    • (2008) Chem. Commun. , vol.44 , pp. 5791-5793
    • Zhou, W.1    Shao, Z.P.2    Ran, R.3    Jin, W.Q.4    Xu, N.P.5
  • 108
    • 84906231952 scopus 로고    scopus 로고
    • 3 - δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells
    • 3-δ perovskite as a new superior oxygen reduction electrode for intermediate-to-low temperature solid oxide fuel cells. J. Mater. Chem. A 2014; 2: 15078-15086.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 15078-15086
    • Qian, B.1    Chen, Y.2    Tade, M.O.3    Shao, Z.P.4
  • 109
    • 84890524917 scopus 로고    scopus 로고
    • An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells
    • Zhu Y, Chen ZG, Zhou W, Jiang S, Zou J, Shao ZP,. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. ChemSusChem 2013; 6: 2249-2254.
    • (2013) ChemSusChem , vol.6 , pp. 2249-2254
    • Zhu, Y.1    Chen, Z.G.2    Zhou, W.3    Jiang, S.4    Zou, J.5    Shao, Z.P.6
  • 110
    • 84957900955 scopus 로고    scopus 로고
    • Promotion of oxygen reduction by exsolved Silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells
    • Zhu Y, Zhou W, Ran R, Chen Y, Shao ZP, Liu M,. Promotion of oxygen reduction by exsolved Silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells. Nano Lett. 2016; 16: 512-518.
    • (2016) Nano Lett. , vol.16 , pp. 512-518
    • Zhu, Y.1    Zhou, W.2    Ran, R.3    Chen, Y.4    Shao, Z.P.5    Liu, M.6
  • 113
    • 78049328115 scopus 로고    scopus 로고
    • High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells
    • Niu Y, Zhou W, Sunarso J, Ge L, Zhu Z, Shao ZP,. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010; 20: 9619-9622.
    • (2010) J. Mater. Chem. , vol.20 , pp. 9619-9622
    • Niu, Y.1    Zhou, W.2    Sunarso, J.3    Ge, L.4    Zhu, Z.5    Shao, Z.P.6
  • 114
    • 84864278813 scopus 로고    scopus 로고
    • 5 + δ (Ln = lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells
    • 5 + δ (Ln = lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2012; 78: 466-474.
    • (2012) Electrochim. Acta , vol.78 , pp. 466-474
    • Chen, D.1    Wang, F.2    Shi, H.3    Ran, R.4    Shao, Z.P.5
  • 116
    • 84940537776 scopus 로고    scopus 로고
    • 3 - δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells
    • 3-δ (x = 0.05, 0.1 and 0.2) perovskite cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 2015; 298: 209-216.
    • (2015) J. Power Sources , vol.298 , pp. 209-216
    • Jiang, S.1    Sunarso, J.2    Zhou, W.3    Shen, J.4    Ran, R.5    Shao, Z.P.6
  • 117
    • 84863902458 scopus 로고    scopus 로고
    • 3 - δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte
    • 3-δ perovskite as a cobalt-free oxygen reduction electrode for solid oxide fuel cells with oxygen-ion conducting electrolyte. J. Mater. Chem. 2012; 22: 15071-15079.
    • (2012) J. Mater. Chem. , vol.22 , pp. 15071-15079
    • Dong, F.1    Chen, D.2    Chen, Y.3    Zhao, Q.4    Shao, Z.P.5
  • 119
    • 84942988952 scopus 로고    scopus 로고
    • Advances in cathode materials for solid oxide fuel cells: Complex oxides without alkaline earth metal elements
    • 1500537
    • Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade MO, Shao ZP,. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv. Energy Mater. 2015; 5 1500537:.
    • (2015) Adv. Energy Mater. , vol.5
    • Chen, Y.1    Zhou, W.2    Ding, D.3    Liu, M.4    Ciucci, F.5    Tade, M.O.6    Shao, Z.P.7
  • 122
    • 84859784423 scopus 로고    scopus 로고
    • 2-protective shell for highly efficient oxygen reduction reaction
    • 2-protective shell for highly efficient oxygen reduction reaction. Sci. Rep. 2012; 2: 327. doi: 10.1038/srep00327.
    • (2012) Sci. Rep. , vol.2 , pp. 327
    • Zhou, W.1    Liang, F.2    Shao, Z.P.3    Zhu, Z.4
  • 123
    • 84891504288 scopus 로고    scopus 로고
    • 3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells
    • 3 cathode prepared by a novel solid-solution method for intermediate temperature solid oxide fuel cells. Chin. J. Catal. 2014; 35: 38-42.
    • (2014) Chin. J. Catal. , vol.35 , pp. 38-42
    • Meng, L.1    Wang, F.2    Wang, A.3    Pu, J.4    Chi, B.5    Li, J.6
  • 124
    • 77954772307 scopus 로고    scopus 로고
    • 1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells
    • 1.9 composites prepared by physical mixing as electrodes of solid oxide fuel cells. J. Power Sources 2010; 195: 7187-7195.
    • (2010) J. Power Sources , vol.195 , pp. 7187-7195
    • Chen, D.1    Ran, R.2    Shao, Z.P.3
  • 127
    • 80053298306 scopus 로고    scopus 로고
    • A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration
    • Zhou W, Shao ZP, Liang F, Chen ZG, Zhu Z, Jin WQ, Xu NP,. A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. J. Mater. Chem. 2011; 21: 15343-15351.
    • (2011) J. Mater. Chem. , vol.21 , pp. 15343-15351
    • Zhou, W.1    Shao, Z.P.2    Liang, F.3    Chen, Z.G.4    Zhu, Z.5    Jin, W.Q.6    Xu, N.P.7
  • 128
    • 84898797404 scopus 로고    scopus 로고
    • Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: Structural and catalytic aspects
    • Oh T, Yu AS, Adijanto L, Gorte RJ, Vohs JM,. Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: structural and catalytic aspects. J. Power Sources 2014; 262: 207-212.
    • (2014) J. Power Sources , vol.262 , pp. 207-212
    • Oh, T.1    Yu, A.S.2    Adijanto, L.3    Gorte, R.J.4    Vohs, J.M.5
  • 129
    • 0141509995 scopus 로고    scopus 로고
    • A redox-stable efficient anode for solid-oxide fuel cells
    • Tao S, Irvine JTS,. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003; 2: 320-323.
    • (2003) Nat. Mater. , vol.2 , pp. 320-323
    • Tao, S.1    Irvine, J.T.S.2
  • 130
    • 33845272752 scopus 로고    scopus 로고
    • 3 - δ observed by in situ high-temperature neutron powder diffraction
    • 3-δ observed by in situ high-temperature neutron powder diffraction. Chem. Mater. 2006; 18: 5453-5460.
    • (2006) Chem. Mater. , vol.18 , pp. 5453-5460
    • Tao, S.1    Irvine, J.T.S.2
  • 132
    • 70349547065 scopus 로고    scopus 로고
    • Effect of Ba doping on performance of LST as anode in solid oxide fuel cells
    • Vincent A, Luo J-L, Chuang KT, Sanger AR,. Effect of Ba doping on performance of LST as anode in solid oxide fuel cells. J. Power Sources 2010; 195: 769-774.
    • (2010) J. Power Sources , vol.195 , pp. 769-774
    • Vincent, A.1    Luo, J.-L.2    Chuang, K.T.3    Sanger, A.R.4
  • 134
    • 33645867976 scopus 로고    scopus 로고
    • Double perovskites as anode materials for solid-oxide fuel cells
    • Huang Y-H, Dass RI, Xing Z-L, Goodenough JB,. Double perovskites as anode materials for solid-oxide fuel cells. Science 2006; 312: 254-257.
    • (2006) Science , vol.312 , pp. 254-257
    • Huang, Y.-H.1    Dass, R.I.2    Xing, Z.-L.3    Goodenough, J.B.4
  • 135
    • 77953129564 scopus 로고    scopus 로고
    • 6 - δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells
    • 6-δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. J. Power Sources 2010; 195: 6356-6366.
    • (2010) J. Power Sources , vol.195 , pp. 6356-6366
    • Zhang, L.1    Zhou, Q.2    He, Q.3    He, T.4
  • 137
    • 50949129720 scopus 로고    scopus 로고
    • 2 composite anodes for direct methane and ethanol solid oxide fuel cells
    • 2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 2008; 185: 179-182.
    • (2008) J. Power Sources , vol.185 , pp. 179-182
    • Jiang, S.P.1    Ye, Y.2    He, T.3    Ho, S.B.4
  • 139
    • 84950162000 scopus 로고    scopus 로고
    • 3 - δ as a promising electrocatalyst for "symmetrical" intermediate-temperature solid oxide fuel cells
    • 3-δ as a promising electrocatalyst for "symmetrical" intermediate-temperature solid oxide fuel cells. J. Power Sources 2016; 306: 92-99.
    • (2016) J. Power Sources , vol.306 , pp. 92-99
    • Shen, J.1    Chen, Y.2    Yang, G.3    Zhou, W.4    Tade, M.O.5    Shao, Z.P.6
  • 140
    • 84863374299 scopus 로고    scopus 로고
    • Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells
    • Yang C, Yang Z, Jin C, Xiao G, Chen F, Han M,. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 2012; 24: 1439-1443.
    • (2012) Adv. Mater. , vol.24 , pp. 1439-1443
    • Yang, C.1    Yang, Z.2    Jin, C.3    Xiao, G.4    Chen, F.5    Han, M.6
  • 142
    • 84885630974 scopus 로고    scopus 로고
    • Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels
    • Wang W, Su C, Wu Y, Ran R, Shao ZP,. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 2013; 113: 8104-8151.
    • (2013) Chem. Rev. , vol.113 , pp. 8104-8151
    • Wang, W.1    Su, C.2    Wu, Y.3    Ran, R.4    Shao, Z.P.5
  • 143
    • 84951138417 scopus 로고    scopus 로고
    • Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
    • Qu J, Wang W, Chen Y, Deng X, Shao ZP,. Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Appl. Energy 2016; 164: 563-571.
    • (2016) Appl. Energy , vol.164 , pp. 563-571
    • Qu, J.1    Wang, W.2    Chen, Y.3    Deng, X.4    Shao, Z.P.5
  • 144
    • 84903459095 scopus 로고    scopus 로고
    • Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells
    • Wang W, Su C, Ran R, Zhao B, Shao ZP, Tade MO, Liu S,. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells. ChemSusChem 2014; 7: 1719-1728.
    • (2014) ChemSusChem , vol.7 , pp. 1719-1728
    • Wang, W.1    Su, C.2    Ran, R.3    Zhao, B.4    Shao, Z.P.5    Tade, M.O.6    Liu, S.7
  • 145
    • 84908120098 scopus 로고    scopus 로고
    • Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase
    • Wang F, Wang W, Qu J, Zhong Y, Tade MO, Shao ZP,. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase. Environ. Sci. Technol. 2014; 48: 12427-12434.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 12427-12434
    • Wang, F.1    Wang, W.2    Qu, J.3    Zhong, Y.4    Tade, M.O.5    Shao, Z.P.6
  • 149
    • 33646461840 scopus 로고    scopus 로고
    • Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity
    • Khorkounov BA, Näfe H, Aldinger F,. Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity. J. Sol. Stat. Electrochem. 2006; 10: 479-487.
    • (2006) J. Sol. Stat. Electrochem. , vol.10 , pp. 479-487
    • Khorkounov, B.A.1    Näfe, H.2    Aldinger, F.3
  • 152
    • 0032675261 scopus 로고    scopus 로고
    • 3-based proton conductors in water-containing atmospheres
    • 3-based proton conductors in water-containing atmospheres. J. Electrochem. Soc. 1999; 146: 2038-2044.
    • (1999) J. Electrochem. Soc. , vol.146 , pp. 2038-2044
    • Bhide, S.V.1    Virkar, A.V.2
  • 153
    • 43849084559 scopus 로고    scopus 로고
    • 3 - δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs)
    • 3-δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 2008; 1: 69-76.
    • (2008) Fuel Cells , vol.1 , pp. 69-76
    • D'Epifanio, A.1    Fabbri, E.2    Di Bartolomeo, E.3    Licoccia, S.4    Traversa, E.5
  • 155
    • 33745614080 scopus 로고    scopus 로고
    • A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers
    • Tao S, Irvine JTS,. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 2006; 18: 1581-1584.
    • (2006) Adv. Mater. , vol.18 , pp. 1581-1584
    • Tao, S.1    Irvine, J.T.S.2
  • 156
    • 77955288358 scopus 로고    scopus 로고
    • 3 - δ-based electrolytes for application in an anode-supported protonic solid oxide fuel cell
    • 3-δ-based electrolytes for application in an anode-supported protonic solid oxide fuel cell. Int. J. Hydrogen Energy 2010; 35: 5611-5620.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 5611-5620
    • Guo, Y.1    Ran, R.2    Shao, Z.P.3
  • 157
    • 84896859155 scopus 로고    scopus 로고
    • Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress-egress approach
    • Liu Y, Ran R, Li S, Jiao Y, Tade MO, Shao ZP,. Significant performance enhancement of yttrium-doped barium cerate proton conductor as electrolyte for solid oxide fuel cells through a Pd ingress-egress approach. J. Power Sources 2014; 257: 308-318.
    • (2014) J. Power Sources , vol.257 , pp. 308-318
    • Liu, Y.1    Ran, R.2    Li, S.3    Jiao, Y.4    Tade, M.O.5    Shao, Z.P.6
  • 159
    • 67349174228 scopus 로고    scopus 로고
    • 3 - δ perovskite oxide as novel interconnect material for solid oxide fuel cells
    • 3-δ perovskite oxide as novel interconnect material for solid oxide fuel cells. J. Alloys Compd. 2009; 479: 764-768.
    • (2009) J. Alloys Compd. , vol.479 , pp. 764-768
    • Wang, S.1    Lin, B.2    Chen, Y.3    Liu, X.4    Meng, G.5
  • 162
    • 84905694039 scopus 로고    scopus 로고
    • Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions
    • Lin L, Zhu Q, Xu A,. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014; 136: 11027-11033.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 11027-11033
    • Lin, L.1    Zhu, Q.2    Xu, A.3
  • 163
    • 84887049834 scopus 로고    scopus 로고
    • Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction
    • Liang H, Wei W, Wu Z, Feng X, Müllen K,. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013; 135: 16002-16005.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 16002-16005
    • Liang, H.1    Wei, W.2    Wu, Z.3    Feng, X.4    Müllen, K.5
  • 165
    • 84898921676 scopus 로고    scopus 로고
    • 4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction
    • 4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014; 26: 2408-2412.
    • (2014) Adv. Mater. , vol.26 , pp. 2408-2412
    • Zhang, G.1    Xia, B.2    Wang, X.3    Lou, X.4
  • 166
    • 84885837863 scopus 로고    scopus 로고
    • Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
    • Liu M, Dong Y, Wu Y, Feng H, Li J,. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction. Chem. Eur. J. 2013; 19: 14781-14786.
    • (2013) Chem. Eur. J. , vol.19 , pp. 14781-14786
    • Liu, M.1    Dong, Y.2    Wu, Y.3    Feng, H.4    Li, J.5
  • 167
    • 84867750790 scopus 로고    scopus 로고
    • Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes
    • Sharifi T, Hu G, Jia X, Wagberg T,. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012; 6: 8904-8912.
    • (2012) ACS Nano , vol.6 , pp. 8904-8912
    • Sharifi, T.1    Hu, G.2    Jia, X.3    Wagberg, T.4
  • 168
    • 84874850369 scopus 로고    scopus 로고
    • Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis
    • Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ,. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 2013; 52: 3110-3116.
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 3110-3116
    • Zheng, Y.1    Jiao, Y.2    Ge, L.3    Jaroniec, M.4    Qiao, S.Z.5
  • 169
    • 79959577135 scopus 로고    scopus 로고
    • Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
    • Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y,. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011; 3: 546-550.
    • (2011) Nat. Chem. , vol.3 , pp. 546-550
    • Suntivich, J.1    Gasteiger, H.A.2    Yabuuchi, N.3    Nakanishi, H.4    Goodenough, J.B.5    Shao-Horn, Y.6
  • 171
    • 0030290830 scopus 로고    scopus 로고
    • Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution
    • Hyodo T, Hayashi M, Miura N, Yamazoe N,. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution. J. Electrochem. Soc. 1996; 143: L266-L267.
    • (1996) J. Electrochem. Soc. , vol.143 , pp. L266-L267
    • Hyodo, T.1    Hayashi, M.2    Miura, N.3    Yamazoe, N.4
  • 173
    • 60649112483 scopus 로고    scopus 로고
    • 3 catalysts towards oxygen reduction in alkaline electrolytes
    • 3 catalysts towards oxygen reduction in alkaline electrolytes. J. Power Sources 2009; 188: 359-366.
    • (2009) J. Power Sources , vol.188 , pp. 359-366
    • Tulloch, J.1    Donne, S.W.2
  • 176
    • 84870375534 scopus 로고    scopus 로고
    • 3 - δ - a new bi-functional catalyst for rechargeable metal-air battery applications
    • 3-δ-a new bi-functional catalyst for rechargeable metal-air battery applications. J. Power Sources 2013; 227: 48-52.
    • (2013) J. Power Sources , vol.227 , pp. 48-52
    • Velraj, S.1    Zhu, J.H.2
  • 177
    • 84904651094 scopus 로고    scopus 로고
    • 3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium
    • 3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium. J. Power Sources 2014; 269: 144-151.
    • (2014) J. Power Sources , vol.269 , pp. 144-151
    • Hu, J.1    Wang, L.2    Shi, L.3    Huang, H.4
  • 178
    • 84858133396 scopus 로고    scopus 로고
    • Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: A thin-film rotating ring-disk electrode study
    • Sunarso J, Torriero AA, Zhou W, Howlett PC, Forsyth M,. Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J. Phys. Chem. C 2012; 116: 5827-5834.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 5827-5834
    • Sunarso, J.1    Torriero, A.A.2    Zhou, W.3    Howlett, P.C.4    Forsyth, M.5
  • 182
    • 84928668483 scopus 로고    scopus 로고
    • Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite
    • Zhu Y, Zhou W, Chen Y, Yu J, Xu X, Su C, Tadé MO, Shao Z,. Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite. Chem. Mater. 2015; 27: 3048-3054.
    • (2015) Chem. Mater. , vol.27 , pp. 3048-3054
    • Zhu, Y.1    Zhou, W.2    Chen, Y.3    Yu, J.4    Xu, X.5    Su, C.6    Tadé, M.O.7    Shao, Z.8
  • 183
    • 62649090565 scopus 로고    scopus 로고
    • 3 perovskite for bi-functional catalysis in an alkaline electrolyte
    • 3 perovskite for bi-functional catalysis in an alkaline electrolyte. J. Power Sources 2009; 189: 1003-1007.
    • (2009) J. Power Sources , vol.189 , pp. 1003-1007
    • Chang, Y.1    Wu, P.2    Wu, C.3    Hsieh, Y.4
  • 185
    • 84893469474 scopus 로고    scopus 로고
    • 3 - y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: Ex situ testing using the rotating ring-disk electrode voltammetry method
    • 3-y (x = 0 and 0.15) oxygen reduction catalysts for use in low temperature electrochemical devices containing alkaline electrolytes: ex situ testing using the rotating ring-disk electrode voltammetry method. J. Mater. Chem. A 2014; 2: 3047-3056.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 3047-3056
    • Hancock, C.A.1    Ong, A.L.2    Slater, P.R.3    Varcoe, J.R.4
  • 187
    • 84860165938 scopus 로고    scopus 로고
    • Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes
    • Malkhandi S, Yang B, Manohar AK, Manivannan A, Prakash GKS, Narayanan SR,. Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J. Phys. Chem. Lett. 2012; 3: 967-972.
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 967-972
    • Malkhandi, S.1    Yang, B.2    Manohar, A.K.3    Manivannan, A.4    Prakash, G.K.S.5    Narayanan, S.R.6
  • 188
    • 84920749766 scopus 로고    scopus 로고
    • 3 - δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer
    • 3-δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv. Mater. 2015; 27: 266-271.
    • (2015) Adv. Mater. , vol.27 , pp. 266-271
    • Jung, J.-I.1    Jeong, H.Y.2    Kim, M.G.3    Nam, G.4    Park, J.5    Cho, J.6
  • 189
    • 84951727714 scopus 로고    scopus 로고
    • Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts
    • 1501560
    • Jung J-I, Park S, Kim MG, Cho J,. Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Adv. Energy Mater. 2015; 5 1501560:.
    • (2015) Adv. Energy Mater. , vol.5
    • Jung, J.-I.1    Park, S.2    Kim, M.G.3    Cho, J.4
  • 197
    • 84877997392 scopus 로고    scopus 로고
    • 3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction
    • 3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. J. Power Sources 2013; 241: 225-230.
    • (2013) J. Power Sources , vol.241 , pp. 225-230
    • Jin, C.1    Cao, X.2    Zhang, L.3    Zhang, C.4    Yang, R.5
  • 198
    • 84906259073 scopus 로고    scopus 로고
    • 3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction
    • 3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction. J. Power Sources 2014; 271: 55-59.
    • (2014) J. Power Sources , vol.271 , pp. 55-59
    • Lu, F.1    Sui, J.2    Su, J.3    Jin, C.4    Shen, M.5    Yang, R.6
  • 199
    • 84930642262 scopus 로고    scopus 로고
    • 3 perovskite nanorods as efficient electrocatalysts for lithium-air battery
    • 3 perovskite nanorods as efficient electrocatalysts for lithium-air battery. J. Power Sources 2015; 293: 726-733.
    • (2015) J. Power Sources , vol.293 , pp. 726-733
    • Lu, F.1    Wang, Y.2    Jin, C.3    Li, F.4    Yang, R.5
  • 200
    • 84935912323 scopus 로고    scopus 로고
    • 3 porous nanorods with enhanced electrocatalytic properties for oxygen reduction and oxygen evolution
    • 3 porous nanorods with enhanced electrocatalytic properties for oxygen reduction and oxygen evolution. Electrochim. Acta 2015; 174: 551-556.
    • (2015) Electrochim. Acta , vol.174 , pp. 551-556
    • Xu, Y.1    Tsou, A.2    Fu, Y.3    Wang, J.4    Tian, J.5    Yang, R.6
  • 201
    • 84899536361 scopus 로고    scopus 로고
    • A bifunctional perovskite catalyst for oxygen reduction and evolution
    • Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J,. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem. Int. Ed. 2014; 53: 4582-4586.
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 4582-4586
    • Jung, J.-I.1    Jeong, H.Y.2    Lee, J.-S.3    Kim, M.G.4    Cho, J.5
  • 203
    • 77954716619 scopus 로고    scopus 로고
    • Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode
    • Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y,. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 2010; 157: B1263-B1268.
    • (2010) J. Electrochem. Soc. , vol.157 , pp. B1263-B1268
    • Suntivich, J.1    Gasteiger, H.A.2    Yabuuchi, N.3    Shao-Horn, Y.4
  • 204
    • 79953219462 scopus 로고    scopus 로고
    • 3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes
    • 3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes. J. Electrochem. Soc. 2011; 158: A597-A604.
    • (2011) J. Electrochem. Soc. , vol.158 , pp. A597-A604
    • Li, X.1    Qu, W.2    Zhang, J.3    Wang, H.4
  • 210
    • 79251510231 scopus 로고    scopus 로고
    • Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities
    • Miyazaki K, Kawakita K, Abe T, Fukutsuka T, Kojima K, Ogumi Z,. Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. J. Mater. Chem. 2011; 21: 1913-1917.
    • (2011) J. Mater. Chem. , vol.21 , pp. 1913-1917
    • Miyazaki, K.1    Kawakita, K.2    Abe, T.3    Fukutsuka, T.4    Kojima, K.5    Ogumi, Z.6
  • 211
    • 84876588139 scopus 로고    scopus 로고
    • Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes
    • Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ,. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 2013; 4: 1254-1259.
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 1254-1259
    • Hardin, W.G.1    Slanac, D.A.2    Wang, X.3    Dai, S.4    Johnston, K.P.5    Stevenson, K.J.6
  • 212
    • 84924971799 scopus 로고    scopus 로고
    • Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries
    • Park HW, Lee DU, Park MG, Ahmed R, Seo MH, Nazar LF, Chen Z,. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. ChemSusChem 2015; 8: 1058-1065.
    • (2015) ChemSusChem , vol.8 , pp. 1058-1065
    • Park, H.W.1    Lee, D.U.2    Park, M.G.3    Ahmed, R.4    Seo, M.H.5    Nazar, L.F.6    Chen, Z.7
  • 213
    • 84928999455 scopus 로고    scopus 로고
    • 3 - δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries
    • 3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries. Nano Energy 2015; 15: 92-103.
    • (2015) Nano Energy , vol.15 , pp. 92-103
    • Prabu, M.1    Ramakrishnan, P.2    Ganesan, P.3    Manthiram, A.4    Shanmugam, S.5
  • 216
    • 84907997905 scopus 로고    scopus 로고
    • Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries
    • Park HW, Lee DU, Zamani P, Seo MH, Nazar LF, Chen Z,. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 2014; 10: 192-200.
    • (2014) Nano Energy , vol.10 , pp. 192-200
    • Park, H.W.1    Lee, D.U.2    Zamani, P.3    Seo, M.H.4    Nazar, L.F.5    Chen, Z.6
  • 217
    • 67849128456 scopus 로고    scopus 로고
    • Powering the planet with solar fuel
    • Gray HB,. Powering the planet with solar fuel. Nat. Chem. 2009; 1: 7. doi: 10.1038/nchem.141.
    • (2009) Nat. Chem. , vol.1 , pp. 7
    • Gray, H.B.1
  • 219
    • 38949102073 scopus 로고    scopus 로고
    • Building better batteries
    • Armand M, Tarascon JM,. Building better batteries. Nature 2008; 451: 652-657.
    • (2008) Nature , vol.451 , pp. 652-657
    • Armand, M.1    Tarascon, J.M.2
  • 220
    • 4043112177 scopus 로고    scopus 로고
    • Sustainable hydrogen production
    • Turner JA,. Sustainable hydrogen production. Science 2004; 305: 972-974.
    • (2004) Science , vol.305 , pp. 972-974
    • Turner, J.A.1
  • 222
    • 0022791535 scopus 로고
    • 2 for anodic oxygen evolution in acid media
    • 2 for anodic oxygen evolution in acid media. Electrochim. Acta 1986; 31: 1311-1316.
    • (1986) Electrochim. Acta , vol.31 , pp. 1311-1316
    • Kötz, R.1    Stucki, S.2
  • 223
    • 82455186174 scopus 로고    scopus 로고
    • Dynamic potential-pH diagrams application to electrocatalysts for water oxidation
    • Minguzzi A, Fan F-RF, Vertova A, Rondinini S, Bard AJ,. Dynamic potential-pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 2012; 3: 217-229.
    • (2012) Chem. Sci. , vol.3 , pp. 217-229
    • Minguzzi, A.1    Fan, F.-R.2    Vertova, A.3    Rondinini, S.4    Bard, A.J.5
  • 224
    • 83255187152 scopus 로고    scopus 로고
    • A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
    • Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y,. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011; 334: 1383-1385.
    • (2011) Science , vol.334 , pp. 1383-1385
    • Suntivich, J.1    May, K.J.2    Gasteiger, H.A.3    Goodenough, J.B.4    Shao-Horn, Y.5
  • 230
    • 84908376898 scopus 로고    scopus 로고
    • 5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction
    • 5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014; 136: 14646-14649.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 14646-14649
    • Kim, J.1    Yin, X.2    Tsao, K.-C.3    Fang, S.4    Yang, H.5
  • 231
    • 84907842105 scopus 로고    scopus 로고
    • 3/carbon nanotube composite for rechargeable zinc-air batteries
    • 3/carbon nanotube composite for rechargeable zinc-air batteries. RSC Adv. 2014; 4: 46084-46092.
    • (2014) RSC Adv. , vol.4 , pp. 46084-46092
    • Ma, H.1    Wang, B.2
  • 234
    • 84957808088 scopus 로고    scopus 로고
    • A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect
    • Zhu Y, Su C, Xu X, Zhou W, Ran R, Shao Z,. A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect. Chem. Eur. J. 2014; 20: 15533-15542.
    • (2014) Chem. Eur. J. , vol.20 , pp. 15533-15542
    • Zhu, Y.1    Su, C.2    Xu, X.3    Zhou, W.4    Ran, R.5    Shao, Z.6
  • 235
    • 84937604067 scopus 로고    scopus 로고
    • Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts
    • Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kötz R, Schmidt TJ,. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015; 5: 12167.
    • (2015) Sci. Rep. , vol.5 , pp. 12167
    • Binninger, T.1    Mohamed, R.2    Waltar, K.3    Fabbri, E.4    Levecque, P.5    Kötz, R.6    Schmidt, T.J.7
  • 238
    • 84944279782 scopus 로고    scopus 로고
    • Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction
    • Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y,. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015; 27: 5989-5994.
    • (2015) Adv. Mater. , vol.27 , pp. 5989-5994
    • Guo, Y.1    Tong, Y.2    Chen, P.3    Xu, K.4    Zhao, J.5    Lin, Y.6    Chu, W.7    Peng, Z.8    Wu, C.9    Xie, Y.10
  • 239
    • 84921265837 scopus 로고    scopus 로고
    • Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications
    • Lee DU, Park HW, Park MG, Ismayilov V, Chen Z,. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications. ACS Appl. Mater. Interfaces 2015; 7: 902-910.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 902-910
    • Lee, D.U.1    Park, H.W.2    Park, M.G.3    Ismayilov, V.4    Chen, Z.5
  • 241
    • 84920725940 scopus 로고    scopus 로고
    • Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation
    • Liu R, Liang F, Zhou W, Yang Y, Zhu Z,. Calcium-doped lanthanum nickelate layered perovskite and nickel oxide nano-hybrid for highly efficient water oxidation. Nano Energy 2015; 12: 115-122.
    • (2015) Nano Energy , vol.12 , pp. 115-122
    • Liu, R.1    Liang, F.2    Zhou, W.3    Yang, Y.4    Zhu, Z.5
  • 244
    • 84940196105 scopus 로고    scopus 로고
    • Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies
    • Seo MH, Park HW, Lee DU, Park MG, Chen Z,. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies. ACS Catal. 2015; 5: 4337-4344.
    • (2015) ACS Catal. , vol.5 , pp. 4337-4344
    • Seo, M.H.1    Park, H.W.2    Lee, D.U.3    Park, M.G.4    Chen, Z.5
  • 246
    • 84939833237 scopus 로고    scopus 로고
    • 3 - δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance
    • 3-δ as a new electrocatalyst for the oxygen evolution reaction in alkaline electrolyte with stable performance. ACS Appl. Mater. Interfaces 2015; 7: 17663-17670.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 17663-17670
    • Su, C.1    Wang, W.2    Chen, Y.3    Yang, G.4    Xu, X.5    Tade, M.O.6    Shao, Z.7
  • 250
    • 84939609138 scopus 로고    scopus 로고
    • High activity and durability of novel perovskite electrocatalysts for water oxidation
    • Zhou W, Zhao M, Liang F, Smith SC, Zhu Z,. High activity and durability of novel perovskite electrocatalysts for water oxidation. Mater. Horiz. 2015; 2: 495-501.
    • (2015) Mater. Horiz. , vol.2 , pp. 495-501
    • Zhou, W.1    Zhao, M.2    Liang, F.3    Smith, S.C.4    Zhu, Z.5
  • 251
    • 85003587692 scopus 로고    scopus 로고
    • Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction
    • 1500187
    • Xu X, Su C, Zhou W, Zhu Y, Chen Y, Shao Z,. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 2016; 3 1500187:.
    • (2016) Adv. Sci. , vol.3
    • Xu, X.1    Su, C.2    Zhou, W.3    Zhu, Y.4    Chen, Y.5    Shao, Z.6
  • 252
    • 84961286132 scopus 로고    scopus 로고
    • 3n + 1 (n = 1, 2, 3, and) electrocatalysts for oxygen reduction and evolution reactions in alkaline media
    • 3n + 1 (n = 1, 2, 3, and) electrocatalysts for oxygen reduction and evolution reactions in alkaline media. Chem. Eur. J. 2016; 22: 2719-2727.
    • (2016) Chem. Eur. J. , vol.22 , pp. 2719-2727
    • Yu, J.1    Sunarso, J.2    Zhu, Y.3    Xu, X.4    Ran, R.5    Zhou, W.6    Shao, Z.7
  • 253
    • 84942279892 scopus 로고    scopus 로고
    • Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices
    • Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F,. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015; 115: 9869-9921.
    • (2015) Chem. Rev. , vol.115 , pp. 9869-9921
    • Chen, D.1    Chen, C.2    Baiyee, Z.M.3    Shao, Z.4    Ciucci, F.5
  • 254
    • 84946811485 scopus 로고    scopus 로고
    • Recent advances of lanthanum-based perovskite oxides for catalysis
    • Zhu H, Zhang P, Dai S,. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015; 5: 6370-6385.
    • (2015) ACS Catal. , vol.5 , pp. 6370-6385
    • Zhu, H.1    Zhang, P.2    Dai, S.3
  • 255
    • 84946867207 scopus 로고    scopus 로고
    • Rising again: Opportunities and challenges for platinum-free electrocatalysts
    • Abbas MA, Bang JH,. Rising again: opportunities and challenges for platinum-free electrocatalysts. Chem. Mater. 2015; 27: 7218-7235.
    • (2015) Chem. Mater. , vol.27 , pp. 7218-7235
    • Abbas, M.A.1    Bang, J.H.2
  • 256
    • 84954373879 scopus 로고    scopus 로고
    • Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media
    • Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G,. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chem. Asian J. 2016; 11: 10-21.
    • (2016) Chem. Asian J. , vol.11 , pp. 10-21
    • Gupta, S.1    Kellogg, W.2    Xu, H.3    Liu, X.4    Cho, J.5    Wu, G.6
  • 257
    • 84893912538 scopus 로고    scopus 로고
    • Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes
    • Wang Z-L, Xu D, Xu J-J, Zhang X-B,. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 2014; 43: 7746-7786.
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7746-7786
    • Wang, Z.-L.1    Xu, D.2    Xu, J.-J.3    Zhang, X.-B.4
  • 259
    • 84962138888 scopus 로고    scopus 로고
    • Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions
    • Zhu Y, Zhou W, Yu J, Chen Y, Liu M, Shao Z,. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016. doi: 10.1021/acs.chemmater.5b04457.
    • (2016) Chem. Mater.
    • Zhu, Y.1    Zhou, W.2    Yu, J.3    Chen, Y.4    Liu, M.5    Shao, Z.6
  • 261
    • 84923073605 scopus 로고    scopus 로고
    • Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions
    • Mueller DN, Machala ML, Bluhm H, Chueh WC,. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 2015; 6: 6097.
    • (2015) Nat. Commun. , vol.6 , pp. 6097
    • Mueller, D.N.1    Machala, M.L.2    Bluhm, H.3    Chueh, W.C.4
  • 263
    • 84907201012 scopus 로고    scopus 로고
    • Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting
    • Rausch B, Symes MD, Chisholm G, Cronin L,. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014; 345: 1326-1330.
    • (2014) Science , vol.345 , pp. 1326-1330
    • Rausch, B.1    Symes, M.D.2    Chisholm, G.3    Cronin, L.4
  • 265
    • 76849102552 scopus 로고    scopus 로고
    • Recent progress in alkaline water electrolysis for hydrogen production and applications
    • Zeng K, Zhang D,. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010; 36: 307-326.
    • (2010) Prog. Energy Combust. Sci. , vol.36 , pp. 307-326
    • Zeng, K.1    Zhang, D.2
  • 266
    • 0019558140 scopus 로고
    • Electrodes for alkaline water electrolysis
    • Hall DE,. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 1981; 128: 740-746.
    • (1981) J. Electrochem. Soc. , vol.128 , pp. 740-746
    • Hall, D.E.1
  • 267
    • 84870987808 scopus 로고    scopus 로고
    • Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions
    • Vrubel H, Hu XL,. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem. Int. Ed. 2012; 51: 12703-12706.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 12703-12706
    • Vrubel, H.1    Hu, X.L.2
  • 270
    • 84922762704 scopus 로고    scopus 로고
    • Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction
    • Liu Y, Li G-D, Yuan L, Ge L, Ding H, Wang D, Zou X,. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction. Nanoscale 2015; 7: 3130-3136.
    • (2015) Nanoscale , vol.7 , pp. 3130-3136
    • Liu, Y.1    Li, G.-D.2    Yuan, L.3    Ge, L.4    Ding, H.5    Wang, D.6    Zou, X.7
  • 271
    • 84930196998 scopus 로고    scopus 로고
    • WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction
    • Fan X, Zhou H, Guo X,. WC nanocrystals grown on vertically aligned carbon nanotubes: an efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 2015; 9: 5125-5134.
    • (2015) ACS Nano , vol.9 , pp. 5125-5134
    • Fan, X.1    Zhou, H.2    Guo, X.3
  • 272
    • 84919797567 scopus 로고    scopus 로고
    • Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values
    • Shi J, Pu Z, Liu Q, Asiri AM, Hu J, Sun X,. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim. Acta 2015; 154: 345-351.
    • (2015) Electrochim. Acta , vol.154 , pp. 345-351
    • Shi, J.1    Pu, Z.2    Liu, Q.3    Asiri, A.M.4    Hu, J.5    Sun, X.6
  • 274
    • 84909944525 scopus 로고    scopus 로고
    • Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity
    • Liang YH, Liu Q, Asiri AM, Sun XP, Luo YL,. Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014; 4: 4065-4069.
    • (2014) ACS Catal. , vol.4 , pp. 4065-4069
    • Liang, Y.H.1    Liu, Q.2    Asiri, A.M.3    Sun, X.P.4    Luo, Y.L.5
  • 275
    • 84911441093 scopus 로고    scopus 로고
    • 2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions
    • 2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014; 6: 13440-13445.
    • (2014) Nanoscale , vol.6 , pp. 13440-13445
    • Jiang, P.1    Liu, Q.2    Sun, X.3
  • 276
    • 84927717607 scopus 로고    scopus 로고
    • High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles
    • Xing Z, Liu Q, Asiri MA, Sun X,. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015; 5: 145-149.
    • (2015) ACS Catal. , vol.5 , pp. 145-149
    • Xing, Z.1    Liu, Q.2    Asiri, M.A.3    Sun, X.4
  • 277
    • 84955309305 scopus 로고    scopus 로고
    • Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution
    • Feng Y, Yu X-Y, Paik U,. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem. Commun. 2016; 52: 1633-1636.
    • (2016) Chem. Commun. , vol.52 , pp. 1633-1636
    • Feng, Y.1    Yu, X.-Y.2    Paik, U.3
  • 278
    • 84931470009 scopus 로고    scopus 로고
    • 1 - XP nanocubes for electrochemical hydrogen evolution
    • 1-xP nanocubes for electrochemical hydrogen evolution. Nanoscale 2015; 7: 11055-11062.
    • (2015) Nanoscale , vol.7 , pp. 11055-11062
    • Hao, J.1    Yang, W.2    Zhang, Z.3    Tang, J.4
  • 284
    • 84942874013 scopus 로고    scopus 로고
    • Mo doped porous Ni-Cu alloy as cathode for hydrogen evolution reaction in alkaline solution
    • Yu L, Lei T, Nan B, Kang J, Jiang Y, He Y, Liu CT,. Mo doped porous Ni-Cu alloy as cathode for hydrogen evolution reaction in alkaline solution. RSC Adv. 2015; 5: 82078-82086.
    • (2015) RSC Adv. , vol.5 , pp. 82078-82086
    • Yu, L.1    Lei, T.2    Nan, B.3    Kang, J.4    Jiang, Y.5    He, Y.6    Liu, C.T.7
  • 285
    • 84901649639 scopus 로고    scopus 로고
    • Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution
    • Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ,. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014; 8: 5290-5296.
    • (2014) ACS Nano , vol.8 , pp. 5290-5296
    • Zheng, Y.1    Jiao, Y.2    Li, L.H.3    Xing, T.4    Chen, Y.5    Jaroniec, M.6    Qiao, S.Z.7
  • 288
    • 84923564759 scopus 로고    scopus 로고
    • In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution
    • Jin H, Wang J, Su D, Wei Z, Pang Z, Wang Y,. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015; 137: 2688-2694.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 2688-2694
    • Jin, H.1    Wang, J.2    Su, D.3    Wei, Z.4    Pang, Z.5    Wang, Y.6
  • 289
    • 84991200039 scopus 로고    scopus 로고
    • Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction
    • Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J,. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016; 10: 684-694.
    • (2016) ACS Nano , vol.10 , pp. 684-694
    • Zhang, H.1    Ma, Z.2    Duan, J.3    Liu, H.4    Liu, G.5    Wang, T.6    Chang, K.7    Li, M.8    Shi, L.9    Meng, X.10    Wu, K.11    Ye, J.12
  • 292
    • 84926244613 scopus 로고    scopus 로고
    • Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes
    • Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z,. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015; 18: 155-162.
    • (2015) Mater. Today , vol.18 , pp. 155-162
    • Ye, M.1    Wen, X.2    Wang, M.3    Iocozzia, J.4    Zhang, N.5    Lin, C.6    Lin, Z.7
  • 294
    • 70149102912 scopus 로고    scopus 로고
    • Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
    • Kojima A, Teshima K, Shirai Y, Miyasaka T,. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009; 131: 6050-6051.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 6050-6051
    • Kojima, A.1    Teshima, K.2    Shirai, Y.3    Miyasaka, T.4
  • 298
    • 84868195671 scopus 로고    scopus 로고
    • Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
    • Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ,. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012; 338: 643-647.
    • (2012) Science , vol.338 , pp. 643-647
    • Lee, M.M.1    Teuscher, J.2    Miyasaka, T.3    Murakami, T.N.4    Snaith, H.J.5
  • 299
    • 84922586427 scopus 로고    scopus 로고
    • Compositional engineering of perovskite materials for high-performance solar cells
    • Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI,. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015; 517: 476-480.
    • (2015) Nature , vol.517 , pp. 476-480
    • Jeon, N.J.1    Noh, J.H.2    Yang, W.S.3    Kim, Y.C.4    Ryu, S.5    Seo, J.6    Seok, S.I.7
  • 300
    • 84887725438 scopus 로고    scopus 로고
    • Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates
    • Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ,. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013; 4: 2761. doi: 10.1038/ncomms3761.
    • (2013) Nat. Commun. , vol.4 , pp. 2761
    • Docampo, P.1    Ball, J.M.2    Darwich, M.3    Eperon, G.E.4    Snaith, H.J.5
  • 301
    • 84937485231 scopus 로고    scopus 로고
    • Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
    • Wang W, Tadé MO, Shao ZP,. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015; 44: 5371-5408.
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 5371-5408
    • Wang, W.1    Tadé, M.O.2    Shao, Z.P.3
  • 303
  • 305
    • 84901937010 scopus 로고    scopus 로고
    • Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells
    • Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG,. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014; 136: 8094-8099.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 8094-8099
    • Hao, F.1    Stoumpos, C.C.2    Chang, R.P.H.3    Kanatzidis, M.G.4
  • 307
    • 84876029268 scopus 로고    scopus 로고
    • Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells
    • Noh JH, Im SH, Heo JH, Mandal TN, Seok SI,. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013; 13: 1764-1769.
    • (2013) Nano Lett. , vol.13 , pp. 1764-1769
    • Noh, J.H.1    Im, S.H.2    Heo, J.H.3    Mandal, T.N.4    Seok, S.I.5
  • 315
    • 84884411335 scopus 로고    scopus 로고
    • Efficient planar heterojunction perovskite solar cells by vapour deposition
    • Liu MZ, Johnston MB, Snaith HJ,. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013; 501: 395-398.
    • (2013) Nature , vol.501 , pp. 395-398
    • Liu, M.Z.1    Johnston, M.B.2    Snaith, H.J.3
  • 317
    • 84903954327 scopus 로고    scopus 로고
    • Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells
    • Chen Q, Zhou H, Song T-B, Luo S, Hong Z, Duan H-S, Dou L, Liu Y, Yang Y,. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014; 14: 4158-4163.
    • (2014) Nano Lett. , vol.14 , pp. 4158-4163
    • Chen, Q.1    Zhou, H.2    Song, T.-B.3    Luo, S.4    Hong, Z.5    Duan, H.-S.6    Dou, L.7    Liu, Y.8    Yang, Y.9
  • 319
    • 84928951451 scopus 로고    scopus 로고
    • Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells
    • Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI,. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014; 13: 897-903.
    • (2014) Nat. Mater. , vol.13 , pp. 897-903
    • Jeon, N.J.1    Noh, J.H.2    Kim, Y.C.3    Yang, W.S.4    Ryu, S.5    Seok, S.I.6
  • 320
    • 84905845476 scopus 로고    scopus 로고
    • 4Cl additive
    • 4Cl additive. Nanoscale 2014; 6: 9935-9938.
    • (2014) Nanoscale , vol.6 , pp. 9935-9938
    • Zuo, C.1    Ding, L.2
  • 321
    • 84902125882 scopus 로고    scopus 로고
    • Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells
    • Liang P-W, Liao C-Y, Chueh C-C, Zuo F, Williams ST, Xin X-K, Lin J, Jen AKY,. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014; 26: 3748-3754.
    • (2014) Adv. Mater. , vol.26 , pp. 3748-3754
    • Liang, P.-W.1    Liao, C.-Y.2    Chueh, C.-C.3    Zuo, F.4    Williams, S.T.5    Xin, X.-K.6    Lin, J.7    Jen, A.K.Y.8
  • 325
    • 84959463275 scopus 로고    scopus 로고
    • Organic-inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites
    • Lyu M, Yun J, Cai M, Jiao Y, Bernhardt PV, Zhang M, Wang Q, Du A, Wang H, Liu G, Wang L,. Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2015; 1-11. doi: 10.1007/s12274-015-0948-y.
    • (2015) Nano Res. , pp. 1-11
    • Lyu, M.1    Yun, J.2    Cai, M.3    Jiao, Y.4    Bernhardt, P.V.5    Zhang, M.6    Wang, Q.7    Du, A.8    Wang, H.9    Liu, G.10    Wang, L.11
  • 326
    • 84905457611 scopus 로고    scopus 로고
    • Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: A DFT analysis
    • Fujisawa J, Giorgi G,. Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: a DFT analysis. Phys. Chem. Chem. Phys. 2014; 16: 17955-17959.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 17955-17959
    • Fujisawa, J.1    Giorgi, G.2
  • 327
    • 84890255407 scopus 로고    scopus 로고
    • 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells
    • 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014; 2: 705-710.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 705-710
    • Niu, G.1    Li, W.2    Meng, F.3    Wang, L.4    Dong, H.5    Qiu, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.