메뉴 건너뛰기




Volumn 56, Issue 1, 2012, Pages 1-12

A tutorial on Bayesian nonparametric models

Author keywords

Bayesian methods; Chinese restaurant process; Indian buffet process

Indexed keywords


EID: 84857235576     PISSN: 00222496     EISSN: 10960880     Source Type: Journal    
DOI: 10.1016/j.jmp.2011.08.004     Document Type: Review
Times cited : (453)

References (89)
  • 2
    • 0000705894 scopus 로고
    • The adaptive nature of human categorization
    • Anderson J. The adaptive nature of human categorization. Psychological Review 1991, 98:409-429.
    • (1991) Psychological Review , vol.98 , pp. 409-429
    • Anderson, J.1
  • 4
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak C. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 1974, 2:1152-1174.
    • (1974) The Annals of Statistics , vol.2 , pp. 1152-1174
    • Antoniak, C.1
  • 11
    • 77956498383 scopus 로고    scopus 로고
    • Distance dependent Chinese restaurant processes
    • In International conference on machine learning
    • Blei, D., & Frazier, P. (2010). Distance dependent Chinese restaurant processes. In International conference on machine learning.
    • (2010)
    • Blei, D.1    Frazier, P.2
  • 12
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • Blei D., Jordan M. Variational inference for Dirichlet process mixtures. Bayesian Analysis 2006, 1(1):121-144.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-144
    • Blei, D.1    Jordan, M.2
  • 13
    • 0035590060 scopus 로고    scopus 로고
    • An overview of analytic rotation in exploratory factor analysis
    • Browne M. An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research 2001, 36(1):111-150.
    • (2001) Multivariate Behavioral Research , vol.36 , Issue.1 , pp. 111-150
    • Browne, M.1
  • 17
    • 79955794799 scopus 로고    scopus 로고
    • Correlated non-parametric latent feature models
    • In International conference on uncertainty in artificial intelligences
    • Doshi-Velez, F., & Ghahramani, Z. (2009). Correlated non-parametric latent feature models. In International conference on uncertainty in artificial intelligence.
    • (2009)
    • Doshi-Velez, F.1    Ghahramani, Z.2
  • 18
    • 80053927588 scopus 로고    scopus 로고
    • Variational inference for the Indian buffet process
    • In Proceedings of the international conference on artificial intelligence and statistics
    • Doshi-Velez, F., Miller, K., Berkeley, C., Van Gael, J., & Teh, Y. (2009). Variational inference for the Indian buffet process. In Proceedings of the international conference on artificial intelligence and statistics (pp. 137-144).
    • (2009)
    • Doshi-Velez, F.1    Miller, K.2    Berkeley, C.3    Van Gael, J.4    Teh, Y.5
  • 19
    • 37549057387 scopus 로고    scopus 로고
    • Generalized spatial Dirichlet process models
    • Duan J., Guindani M., Gelfand A. Generalized spatial Dirichlet process models. Biometrika 2007, 94(4):809.
    • (2007) Biometrika , vol.94 , Issue.4 , pp. 809
    • Duan, J.1    Guindani, M.2    Gelfand, A.3
  • 21
    • 3843139378 scopus 로고    scopus 로고
    • Particle filters for mixture models with an unknown number of components
    • Fearnhead P. Particle filters for mixture models with an unknown number of components. Statistics and Computing 2004, 14(1):11-21.
    • (2004) Statistics and Computing , vol.14 , Issue.1 , pp. 11-21
    • Fearnhead, P.1
  • 22
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson T. A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1973, 1(2):209-230.
    • (1973) The Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.1
  • 25
    • 0036017464 scopus 로고    scopus 로고
    • A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models
    • Gelfand A., Kottas A. A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. Journal of Computational and Graphical Statistics 2002, 11:289-305.
    • (2002) Journal of Computational and Graphical Statistics , vol.11 , pp. 289-305
    • Gelfand, A.1    Kottas, A.2
  • 28
  • 29
    • 67349278780 scopus 로고    scopus 로고
    • A Bayesian framework for word segmentation: exploring the effects of context
    • Goldwater S., Griffiths T., Johnson M. A Bayesian framework for word segmentation: exploring the effects of context. Cognition 2009, 112(1):21-54.
    • (2009) Cognition , vol.112 , Issue.1 , pp. 21-54
    • Goldwater, S.1    Griffiths, T.2    Johnson, M.3
  • 32
    • 50949114162 scopus 로고    scopus 로고
    • Unifying rational models of categorization via the hierarchical Dirichlet process
    • In Proceedings of the 29th annual conference of the cognitive science society
    • Griffiths, T., Canini, K., Sanborn, A., & Navarro, D. (2007). Unifying rational models of categorization via the hierarchical Dirichlet process. In Proceedings of the 29th annual conference of the cognitive science society (pp. 323-328).
    • (2007) , pp. 323-328
    • Griffiths, T.1    Canini, K.2    Sanborn, A.3    Navarro, D.4
  • 36
    • 84857239857 scopus 로고    scopus 로고
    • Dirichlet process mixtures of generalized linear models
    • In Proceedings of the international conference on artificial intelligence and statistics
    • Hannah, L., Blei, D., & Powell, W. (2010). Dirichlet process mixtures of generalized linear models. In Proceedings of the international conference on artificial intelligence and statistics. Vol. 13.
    • (2010) , vol.13
    • Hannah, L.1    Blei, D.2    Powell, W.3
  • 38
    • 78651420885 scopus 로고    scopus 로고
    • Cambridge University Press, N. Hjort, C. Holmes, P. Müller, S.G. Walker (Eds.)
    • Bayesian nonparametrics: principles and practice 2010, Cambridge University Press. N. Hjort, C. Holmes, P. Müller, S.G. Walker (Eds.).
    • (2010) Bayesian nonparametrics: principles and practice
  • 40
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and Bayesian strategies
    • Ishwaran H., Rao J. Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics 2005, 730-773.
    • (2005) Annals of Statistics , pp. 730-773
    • Ishwaran, H.1    Rao, J.2
  • 41
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate sum representations for the Dirichlet process
    • Ishwaran H., Zarepour M. Exact and approximate sum representations for the Dirichlet process. Canadian Journal of Statistics 2002, 30(2):269-283.
    • (2002) Canadian Journal of Statistics , vol.30 , Issue.2 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 42
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • Jain S., Neal R. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics 2004, 13(1):158-182.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.1 , pp. 158-182
    • Jain, S.1    Neal, R.2
  • 44
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M., Ghahramani Z., Jaakkola T., Saul L. An introduction to variational methods for graphical models. Machine Learning 1999, 37(2):183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 45
    • 2542636564 scopus 로고    scopus 로고
    • The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning
    • Kane M., Hambrick D., Tuholski S., Wilhelm O., Payne T., Engle R. The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General 2004, 133(2):189.
    • (2004) Journal of Experimental Psychology: General , vol.133 , Issue.2 , pp. 189
    • Kane, M.1    Hambrick, D.2    Tuholski, S.3    Wilhelm, O.4    Payne, T.5    Engle, R.6
  • 48
    • 73449097433 scopus 로고    scopus 로고
    • A probabilistic model of theory formation
    • Kemp C., Tenenbaum J., Niyogi S., Griffiths T. A probabilistic model of theory formation. Cognition 2010, 114(2):165-196.
    • (2010) Cognition , vol.114 , Issue.2 , pp. 165-196
    • Kemp, C.1    Tenenbaum, J.2    Niyogi, S.3    Griffiths, T.4
  • 49
    • 84857233123 scopus 로고    scopus 로고
    • Nonparametric Bayesian sparse factor models with application to gene expression modelling
    • Knowles D., Ghahramani Z. Nonparametric Bayesian sparse factor models with application to gene expression modelling. Annals of Applied Statistics 2011, 5:1534-1552.
    • (2011) Annals of Applied Statistics , vol.5 , pp. 1534-1552
    • Knowles, D.1    Ghahramani, Z.2
  • 50
    • 47949127602 scopus 로고    scopus 로고
    • Collapsed variational Dirichlet process mixture models
    • In Proceedings of the international joint conference on artificial intelligence
    • Kurihara, K., Welling, M., & Teh, Y. (2007). Collapsed variational Dirichlet process mixture models. In Proceedings of the international joint conference on artificial intelligence. Vol. 20 (p. 19).
    • (2007) , vol.20
    • Kurihara, K.1    Welling, M.2    Teh, Y.3
  • 51
    • 79551627798 scopus 로고    scopus 로고
    • How cognitive modeling can benefit from hierarchical Bayesian models
    • Lee M. How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical Psychology 2010, 55(1):1-7.
    • (2010) Journal of Mathematical Psychology , vol.55 , Issue.1 , pp. 1-7
    • Lee, M.1
  • 52
    • 80053356136 scopus 로고    scopus 로고
    • The infinite PCFG using hierarchical Dirichlet processes
    • In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning
    • Liang, P., Petrov, S., Jordan, M., & Klein, D. (2007). The infinite PCFG using hierarchical Dirichlet processes. In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (pp. 688-697).
    • (2007)
    • Liang, P.1    Petrov, S.2    Jordan, M.3    Klein, D.4
  • 54
    • 84857232845 scopus 로고    scopus 로고
    • Dependent nonparametric processes. In ASA proceedings of the section on Bayesian statistical science
    • MacEachern, S. (1999). Dependent nonparametric processes. In ASA proceedings of the section on Bayesian statistical science (pp. 50-55).
    • (1999) , pp. 50-55
    • MacEachern, S.1
  • 57
    • 78650259686 scopus 로고    scopus 로고
    • The phylogenetic indian buffet process: a non-exchangeable nonparametric prior for latent features
    • In International conference on uncertainty in artificial intelligence
    • Miller, K., Griffiths, T., & Jordan, M. (2008). The phylogenetic indian buffet process: a non-exchangeable nonparametric prior for latent features. In International conference on uncertainty in artificial intelligence.
    • (2008)
    • Miller, K.1    Griffiths, T.2    Jordan, M.3
  • 61
    • 55749098088 scopus 로고    scopus 로고
    • Latent features in similarity judgments: a nonparametric Bayesian approach
    • Navarro D., Griffiths T. Latent features in similarity judgments: a nonparametric Bayesian approach. Neural Computation 2008, 20(11):2597-2628.
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2597-2628
    • Navarro, D.1    Griffiths, T.2
  • 63
    • 0003073730 scopus 로고
    • Bayesian mixture modeling. In Maximum entropy and Bayesian methods: proceedings of the 11th international workshop on maximum entropy and Bayesian methods of statistical analysis
    • Neal, R. (1992). Bayesian mixture modeling. In Maximum entropy and Bayesian methods: proceedings of the 11th international workshop on maximum entropy and Bayesian methods of statistical analysis (pp. 197-211).
    • (1992) , pp. 197-211
    • Neal, R.1
  • 64
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 2000, 249-265.
    • (2000) Journal of Computational and Graphical Statistics , pp. 249-265
    • Neal, R.1
  • 65
    • 70349643583 scopus 로고    scopus 로고
    • Hidden Markov models with stick-breaking priors
    • Paisley J., Carin L. Hidden Markov models with stick-breaking priors. IEEE Transactions on Signal Processing 2009, 57(10):3905-3917.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.10 , pp. 3905-3917
    • Paisley, J.1    Carin, L.2
  • 66
    • 84857231680 scopus 로고    scopus 로고
    • Nonparametric factor analysis with beta process priors
    • In Proceedings of the international conference on machine learning
    • Paisley, J., Zaas, A., Woods, C., Ginsburg, G., & Carin, L. (2010). Nonparametric factor analysis with beta process priors. In Proceedings of the international conference on machine learning.
    • (2010)
    • Paisley, J.1    Zaas, A.2    Woods, C.3    Ginsburg, G.4    Carin, L.5
  • 67
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series (6) 1901, 2(11):559-572.
    • (1901) Philosophical Magazine Series (6) , vol.2 , Issue.11 , pp. 559-572
    • Pearson, K.1
  • 68
    • 84857235189 scopus 로고    scopus 로고
    • Combinatorial stochastic processes. Techincal report 621. Notes for Saint Flour Summer School. Dept. Statistics. UC, Berkeley
    • Pitman, J. (2002). Combinatorial stochastic processes. Techincal report 621. Notes for Saint Flour Summer School. Dept. Statistics. UC, Berkeley.
    • (2002)
    • Pitman, J.1
  • 72
    • 0039052586 scopus 로고    scopus 로고
    • Modeling response times for two-choice decisions
    • Ratcliff R., Rouder J. Modeling response times for two-choice decisions. Psychological Science 1998, 9(5):347.
    • (1998) Psychological Science , vol.9 , Issue.5 , pp. 347
    • Ratcliff, R.1    Rouder, J.2
  • 73
    • 0036731339 scopus 로고    scopus 로고
    • Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability
    • Ratcliff R., Tuerlinckx F. Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review 2002, 9(3):438-481.
    • (2002) Psychonomic Bulletin & Review , vol.9 , Issue.3 , pp. 438-481
    • Ratcliff, R.1    Tuerlinckx, F.2
  • 74
    • 78249247078 scopus 로고    scopus 로고
    • Rational approximations to rational models: alternative algorithms for category learning
    • Sanborn A., Griffiths T., Navarro D. Rational approximations to rational models: alternative algorithms for category learning. Psychological Review 2010, 117(4):1144.
    • (2010) Psychological Review , vol.117 , Issue.4 , pp. 1144
    • Sanborn, A.1    Griffiths, T.2    Navarro, D.3
  • 75
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman J. A constructive definition of Dirichlet priors. Statistica Sinica 1994, 4(2):639-650.
    • (1994) Statistica Sinica , vol.4 , Issue.2 , pp. 639-650
    • Sethuraman, J.1
  • 78
    • 0000600340 scopus 로고
    • General intelligence, objectively determined and measured
    • Spearman C. General intelligence, objectively determined and measured. The American Journal of Psychology 1904, 201-292.
    • (1904) The American Journal of Psychology , pp. 201-292
    • Spearman, C.1
  • 79
  • 80
    • 70049094991 scopus 로고    scopus 로고
    • Stick-breaking construction for the Indian buffet process
    • In Proceedings of the international conference on artificial intelligence and statistics
    • Teh, Y., Görür, D., & Ghahramani, Z. (2007). Stick-breaking construction for the Indian buffet process. In Proceedings of the international conference on artificial intelligence and statistics. Vol. 11.
    • (2007) , vol.11
    • Teh, Y.1    Görür, D.2    Ghahramani, Z.3
  • 82
    • 84889570407 scopus 로고    scopus 로고
    • Hierarchical beta processes and the indian buffet process
    • In Proceedings of the international conference on artificial intelligence and statistics
    • Thibaux, R., & Jordan, M. (2007). Hierarchical beta processes and the indian buffet process. In Proceedings of the international conference on artificial intelligence and statistics.
    • (2007)
    • Thibaux, R.1    Jordan, M.2
  • 83
    • 0000296415 scopus 로고
    • Multiple factor analysis
    • Thurstone L. Multiple factor analysis. Psychological Review 1931, 38(5):406.
    • (1931) Psychological Review , vol.38 , Issue.5 , pp. 406
    • Thurstone, L.1
  • 85
    • 78149409945 scopus 로고    scopus 로고
    • Prior sensitivity in theory testing: an apologia for the Bayes factor
    • Vanpaemel W. Prior sensitivity in theory testing: an apologia for the Bayes factor. Journal of Mathematical Psychology 2010, 54:491-498.
    • (2010) Journal of Mathematical Psychology , vol.54 , pp. 491-498
    • Vanpaemel, W.1
  • 88
    • 84857239854 scopus 로고    scopus 로고
    • Dependent Indian buffet processes. In International conference on artificial intelligence and statistics
    • Williamson, S., Orbanz, P., & Ghahramani, Z. (2010). Dependent Indian buffet processes. In International conference on artificial intelligence and statistics.
    • (2010)
    • Williamson, S.1    Orbanz, P.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.