-
1
-
-
77958063401
-
Three naive bayes approaches for discrimination-free classification
-
Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2):277-292, 2010.
-
(2010)
Data Mining and Knowledge Discovery
, vol.21
, Issue.2
, pp. 277-292
-
-
Calders, T.1
Verwer, S.2
-
2
-
-
34249753618
-
Support-vector networks
-
Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
3
-
-
84856446756
-
Fairness through awareness
-
ACM
-
Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 214-226. ACM, 2012.
-
(2012)
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
, pp. 214-226
-
-
Dwork, C.1
Hardt, M.2
Pitassi, T.3
Reingold, O.4
Zemel, R.5
-
4
-
-
84954161181
-
Certifying and removing disparate impact
-
Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. Certifying and removing disparate impact. Proceedings of the 21th ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining, pages 259-268, 2015.
-
(2015)
Proceedings of the 21th ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining
, pp. 259-268
-
-
Feldman, M.1
Moeller John Friedler, S.A.2
Scheidegger, C.3
Venkatasubramanian, S.4
-
8
-
-
84877110194
-
Quantifying explainable discrimination and removing illegal discrimination in automated decision making
-
Faisal Kamiran, Indré Zliobaitè, and Toon Calders. Quantifying explainable discrimination and removing illegal discrimination in automated decision making. Knowledge and Information Systems, 35(3):613-644, 2013.
-
(2013)
Knowledge and Information Systems
, vol.35
, Issue.3
, pp. 613-644
-
-
Kamiran, F.1
Zliobaitè, I.2
Calders, T.3
-
9
-
-
84866854564
-
Fairness-aware classifier with prejudice remover regularizer
-
Springer
-
Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with prejudice remover regularizer. In Machine Learning and Knowledge Discovery in Databases, pages 35-50. Springer, 2012.
-
(2012)
Machine Learning and Knowledge Discovery in Databases
, pp. 35-50
-
-
Kamishima, T.1
Akaho, S.2
Asoh, H.3
Sakuma, J.4
-
12
-
-
84926623018
-
-
John Podestà, Penny Pritzker, Ernest J. Moniz, John Holdren, and Jeffrey Zients. Big data: Seizing opportunities, preserving values, 2014.
-
(2014)
Big Data: Seizing Opportunities, Preserving Values
-
-
Podestà, J.1
Pritzker, P.2
Moniz, E.J.3
Holdren, J.4
Zients, J.5
-
13
-
-
84900849170
-
A multidisci-plinary survey on discrimination analysis
-
Andrea Romei and Salvatore Ruggieri. A multidisci-plinary survey on discrimination analysis. The Knowledge Engineering Review, 29:582-638, 11 2014.
-
(2014)
The Knowledge Engineering Review
, vol.29
, pp. 582-63811
-
-
Romei, A.1
Ruggieri, S.2
-
15
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, pages 1651-1686, 1998.
-
(1998)
Annals of Statistics
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Sun Lee, W.4
-
17
-
-
84897542525
-
Learning fair representations
-
Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 325-333, 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13
, pp. 325-333
-
-
Zemel, R.1
Wu, Y.2
Swersky, K.3
Pitassi, T.4
Dwork, C.5
|