메뉴 건너뛰기




Volumn 32, Issue 20, 2016, Pages 3089-3097

ACE: Adaptive cluster expansion for maximum entropy graphical model inference

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ENTROPY; NORMAL DISTRIBUTION; STATISTICAL MODEL; THEORETICAL MODEL;

EID: 84991587358     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw328     Document Type: Article
Times cited : (88)

References (43)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley, D., et al. (1985). A learning algorithm for Boltzmann machines. Cognit. Sci., 9, 147-169
    • (1985) Cognit. Sci , vol.9 , pp. 147-169
    • Ackley, D.1
  • 2
    • 0010869840 scopus 로고
    • Differential geometrical theory of statistics
    • Differential Geometry in Statistical Inference
    • Amari, S. (1987). Differential geometrical theory of statistics. IMS Monograph vol. 10, Differential Geometry in Statistical Inference, pp. 20-94
    • (1987) IMS Monograph , vol.10 , pp. 20-94
    • Amari, S.1
  • 3
    • 84857876275 scopus 로고    scopus 로고
    • Inverse Ising inference using all the data
    • Aurell, E., and Ekeberg, M. (2012). Inverse Ising inference using all the data. Phys. Rev. Lett., 108, 090201
    • (2012) Phys. Rev. Lett , vol.108 , pp. 090201
    • Aurell, E.1    Ekeberg, M.2
  • 4
    • 84875340210 scopus 로고    scopus 로고
    • Ising models for neural activity inferred via selective cluster expansion: Structural and coding properties
    • Barton, J., and Cocco, S. (2013). Ising models for neural activity inferred via selective cluster expansion: structural and coding properties. J. Stat. Mech.: Theory Expe., 2013, P03002
    • (2013) J. Stat. Mech.: Theory Expe , vol.2013 , pp. P03002
    • Barton, J.1    Cocco, S.2
  • 5
    • 84905453172 scopus 로고    scopus 로고
    • Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models
    • Barton, J.P., et al. (2014). Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models. Phys. Rev. E, 90, 012132
    • (2014) Phys. Rev. e , vol.90 , pp. 012132
    • Barton, J.P.1
  • 6
    • 84923166404 scopus 로고    scopus 로고
    • Scaling laws describe memories of host-pathogen riposte in the HIV population
    • Barton, J.P., et al. (2015). Scaling laws describe memories of host-pathogen riposte in the HIV population. Proc. Natl. Acad. Sci. U. S. A., 112, 1965-1970
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 1965-1970
    • Barton, J.P.1
  • 7
    • 84959112877 scopus 로고    scopus 로고
    • On the entropy of protein families
    • Barton, J.P., et al. (2016). On the entropy of protein families. J. Stat. Phys., 162, 1-27
    • (2016) J. Stat. Phys , vol.162 , pp. 1-27
    • Barton, J.P.1
  • 8
    • 79952216403 scopus 로고    scopus 로고
    • Adaptive cluster expansion for inferring Boltzmann machines with noisy data
    • Cocco, S., and Monasson, R. (2011). Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys. Rev. Lett., 106, 090601
    • (2011) Phys. Rev. Lett , vol.106 , pp. 090601
    • Cocco, S.1    Monasson, R.2
  • 9
    • 84860378914 scopus 로고    scopus 로고
    • Adaptive cluster expansion for the inverse Ising problem: Convergence algorithm and tests
    • Cocco, S., and Monasson, R. (2012). Adaptive cluster expansion for the inverse Ising problem: convergence, algorithm and tests. J. Stat. Phys., 147, 252-314
    • (2012) J. Stat. Phys , vol.147 , pp. 252-314
    • Cocco, S.1    Monasson, R.2
  • 10
    • 69549122188 scopus 로고    scopus 로고
    • Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods
    • Cocco, S., et al. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proc. Natl. Acad. Sci. U. S. A., 106, 14058-14062
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 14058-14062
    • Cocco, S.1
  • 11
    • 84883427400 scopus 로고    scopus 로고
    • From principal component to direct coupling analysis of coevolution in proteins: Low-eigenvalue modes are needed for structure prediction
    • Cocco, S., et al. (2013). From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction. PLoS Comput. Biol., 9, e1003176
    • (2013) PLoS Comput. Biol , vol.9 , pp. e1003176
    • Cocco, S.1
  • 12
    • 38849115223 scopus 로고    scopus 로고
    • Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction
    • Dunn, S.D., et al. (2008). Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics, 24, 333-340
    • (2008) Bioinformatics , vol.24 , pp. 333-340
    • Dunn, S.D.1
  • 13
    • 84872521100 scopus 로고    scopus 로고
    • Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models
    • Ekeberg, M., et al. (2013). Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E, 87, 012707
    • (2013) Phys. Rev. e , vol.87 , pp. 012707
    • Ekeberg, M.1
  • 14
    • 84905637666 scopus 로고    scopus 로고
    • Fast pseudolikelihood maximization for directcoupling analysis of protein structure from many homologous amino-Acid sequences
    • Ekeberg, M., et al. (2014). Fast pseudolikelihood maximization for directcoupling analysis of protein structure from many homologous amino-Acid sequences. J. Comput. Phys., 276, 341-356
    • (2014) J. Comput. Phys , vol.276 , pp. 341-356
    • Ekeberg, M.1
  • 15
    • 84908313189 scopus 로고    scopus 로고
    • Improving contact prediction along three dimensions
    • Feinauer, C., et al. (2014). Improving contact prediction along three dimensions. PLoS Comput. Biol., 10, e1003847
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003847
    • Feinauer, C.1
  • 16
    • 84875546274 scopus 로고    scopus 로고
    • Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design
    • Ferguson, A.L., et al. (2013). Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity, 38, 606-617
    • (2013) Immunity , vol.38 , pp. 606-617
    • Ferguson, A.L.1
  • 17
    • 84964778227 scopus 로고    scopus 로고
    • Coevolutionary landscape inference and the contextdependence ofmutations in beta-lactamase TEM-1
    • Figliuzzi, M., et al. (2016). Coevolutionary landscape inference and the contextdependence ofmutations in beta-lactamase TEM-1. Mol. Biol. Evol., 33, 268-280
    • (2016) Mol. Biol. Evol , vol.33 , pp. 268-280
    • Figliuzzi, M.1
  • 18
    • 84937252674 scopus 로고    scopus 로고
    • HIV-1 assembly release and maturation
    • Freed, E.O. (2015). HIV-1 assembly, release and maturation. Nat. Rev. Microbiol., 13, 484-496
    • (2015) Nat. Rev. Microbiol , vol.13 , pp. 484-496
    • Freed, E.O.1
  • 19
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 20
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A., et al. (2008). A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat., 2, 1360-1383
    • (2008) Ann. Appl. Stat , vol.2 , pp. 1360-1383
    • Gelman, A.1
  • 21
    • 80155134838 scopus 로고    scopus 로고
    • The inverse ising problem for onedimensional chains with arbitrary finite-range couplings
    • Gori, G., and Trombettoni, A. (2011). The inverse ising problem for onedimensional chains with arbitrary finite-range couplings. J. Stat. Mech.: Theory Exp., 2011, P10021
    • (2011) J. Stat. Mech.: Theory Exp , vol.2011 , pp. P10021
    • Gori, G.1    Trombettoni, A.2
  • 23
    • 84862647180 scopus 로고    scopus 로고
    • Three-dimensional structures of membrane proteins from genomic sequencing
    • Hopf, T.A., et al. (2012). Three-dimensional structures of membrane proteins from genomic sequencing. Cell, 149, 1607-1621
    • (2012) Cell , vol.149 , pp. 1607-1621
    • Hopf, T.A.1
  • 24
    • 84975833219 scopus 로고    scopus 로고
    • Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models
    • Jacquin, H., et al. (2016). Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models. PLoS Comput. Biol, 12, e1004889
    • (2016) PLoS Comput. Biol , vol.12 , pp. e1004889
    • Jacquin, H.1
  • 25
    • 0020187981 scopus 로고
    • On the rationale of maximum-entropy methods
    • Jaynes, E.T. (1982). On the rationale of maximum-entropy methods. Proc. IEEE, 70, 939-952
    • (1982) Proc IEEE , vol.70 , pp. 939-952
    • Jaynes, E.T.1
  • 26
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen, H.J., and Rodr-iguez, F.B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Comput., 10, 1137-1156
    • (1998) Neural Comput , vol.10 , pp. 1137-1156
    • Kappen, H.J.1    Rodr-Iguez, F.B.2
  • 27
    • 84923177364 scopus 로고    scopus 로고
    • The fitness landscape of HIV-1 Gag: Advanced modeling approaches and validation of model predictions by in vitro testing
    • Mann, J.K., et al. (2014). The fitness landscape of HIV-1 Gag: advanced modeling approaches and validation of model predictions by in vitro testing. PLoS Comput. Biol., 10, e1003776
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003776
    • Mann, J.K.1
  • 28
    • 82855163967 scopus 로고    scopus 로고
    • Protein 3D structure computed from evolutionary sequence variation
    • Marks, D.S., et al. (2011). Protein 3D structure computed from evolutionary sequence variation. PLoS One, 6, e28766
    • (2011) PLoS One , vol.6 , pp. e28766
    • Marks, D.S.1
  • 29
    • 84874239118 scopus 로고    scopus 로고
    • Beyond inverse Ising model: Structure of the analytical solution
    • Mastromatteo, I. (2013). Beyond inverse Ising model: structure of the analytical solution. J. Stat. Phys., 150, 658-670
    • (2013) J. Stat. Phys , vol.150 , pp. 658-670
    • Mastromatteo, I.1
  • 30
    • 83755178457 scopus 로고    scopus 로고
    • Direct-coupling analysis of residue coevolution captures native contacts across many protein families
    • Morcos, F., et al. (2011). Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. U. S. A., 108, E1293-E1301
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. E1293-E1301
    • Morcos, F.1
  • 31
    • 84858776397 scopus 로고    scopus 로고
    • Bethe-Peierls approximation and the inverse Ising problem
    • Nguyen, H.C., and Berg, J. (2012). Bethe-Peierls approximation and the inverse Ising problem. J. Stat. Mech.: Theory Exp., 2012, P03004
    • (2012) J. Stat. Mech.: Theory Exp , vol.2012 , pp. P03004
    • Nguyen, H.C.1    Berg, J.2
  • 32
    • 67649818089 scopus 로고    scopus 로고
    • Replay of rule-learning related neural patterns in the prefrontal cortex during sleep
    • Peyrache, A., et al. (2009). Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci., 12, 919-926
    • (2009) Nat. Neurosci , vol.12 , pp. 919-926
    • Peyrache, A.1
  • 33
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using l1-regularized logistic regression
    • Ravikumar, P., et al. (2010). High-dimensional Ising model selection using l1-regularized logistic regression. Ann. Stat., 38, 1287-1319
    • (2010) Ann. Stat , vol.38 , pp. 1287-1319
    • Ravikumar, P.1
  • 34
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The rprop algorithm
    • IEEE
    • Riedmiller, M., and Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: IEEE International Conference on Neural Networks, 1993, IEEE, pp. 586-591
    • (1993) IEEE International Conference on Neural Networks , vol.1993 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 35
    • 67549115079 scopus 로고    scopus 로고
    • Ising model for neural data: Model quality and approximate methods for extracting functional connectivity
    • Roudi, Y., et al. (2009). Ising model for neural data: Model quality and approximate methods for extracting functional connectivity. Phys. Rev. E, 79, 051915
    • (2009) Phys. Rev. e , vol.79 , pp. 051915
    • Roudi, Y.1
  • 36
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • Schneidman, E., et al. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007-1012
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1
  • 37
    • 64549086225 scopus 로고    scopus 로고
    • Small-correlation expansions for the inverse Ising problem
    • Sessak, V., and Monasson, R. (2009). Small-correlation expansions for the inverse Ising problem. J. Phys. A: Math. Theor., 42, 055001
    • (2009) J. Phys. A: Math. Theor , vol.42 , pp. 055001
    • Sessak, V.1    Monasson, R.2
  • 38
    • 36549097257 scopus 로고
    • Enumeration of all compact conformations of copolymers with random sequence of links
    • Shakhnovich, E., and Gutin, A. (1990). Enumeration of all compact conformations of copolymers with random sequence of links. J. Chem. Phys., 93, 5967-5971
    • (1990) J. Chem. Phys , vol.93 , pp. 5967-5971
    • Shakhnovich, E.1    Gutin, A.2
  • 39
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E.
    • Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
  • 40
    • 84890451610 scopus 로고    scopus 로고
    • Spinmodels inferred frompatient-derived viral sequence data faithfully describe HIV fitness landscapes
    • Shekhar, K., et al. (2013). Spinmodels inferred frompatient-derived viral sequence data faithfully describe HIV fitness landscapes. Phys. Rev. E, 88, 062705
    • (2013) Phys. Rev. e , vol.88 , pp. 062705
    • Shekhar, K.1
  • 41
    • 84862990368 scopus 로고    scopus 로고
    • Genomics-Aided structure prediction
    • Sulkowska, J.I., et al. (2012). Genomics-Aided structure prediction. Proc. Natl. Acad. Sci. U. S. A., 109, 10340-10345
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 10340-10345
    • Sulkowska, J.I.1
  • 42
    • 84946595514 scopus 로고    scopus 로고
    • From residue coevolution to protein conformational ensembles and functional dynamics
    • Sutto, L., et al. (2015). From residue coevolution to protein conformational ensembles and functional dynamics. Proc. Natl. Acad. Sci., 112, 201508584
    • (2015) Proc. Natl. Acad. Sci , vol.112 , pp. 201508584
    • Sutto, L.1
  • 43
    • 84995502739 scopus 로고    scopus 로고
    • Inferred model of the prefrontal cortex activity unveils cell assemblies and memory replay
    • Tavoni, G., et al. (2015). Inferred model of the prefrontal cortex activity unveils cell assemblies and memory replay. bioRxiv 10.1101/028316
    • (2015) BioRxiv 10.1101/028316
    • Tavoni, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.