메뉴 건너뛰기




Volumn 2013, Issue 3, 2013, Pages

Ising models for neural activity inferred via selective cluster expansion: Structural and coding properties

Author keywords

neuronal networks (theory); statistical inference

Indexed keywords


EID: 84875340210     PISSN: None     EISSN: 17425468     Source Type: Journal    
DOI: 10.1088/1742-5468/2013/03/P03002     Document Type: Article
Times cited : (37)

References (56)
  • 1
    • 0020563433 scopus 로고
    • The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system for multiple unit records
    • DOI 10.1016/0165-0270(83)90097-3
    • McNaughton B L, O'Keefe J and Barnes C A 1983 The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records J. Neurosci. Meth. 8 391 (Pubitemid 13046831)
    • (1983) Journal of Neuroscience Methods , vol.8 , Issue.4 , pp. 391-397
    • McNaughton, B.L.1    O'Keefe, J.2    Barnes, C.A.3
  • 2
    • 0028788653 scopus 로고
    • Concerted signaling by retinal ganglion cells
    • 10.1126/science.270.5239.1207 0036-8075
    • Meister M, Lagnado L and Baylor D A 1995 Concerted signaling by retinal ganglion cells Science 270 1207
    • (1995) Science , vol.270 , Issue.5239 , pp. 1207
    • Meister, M.1    Lagnado, L.2    Baylor, D.A.3
  • 3
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • 10.1038/nature04701 0028-0836
    • Schneidman E, Berry M J II, Segev R and Bialek W 2006 Weak pairwise correlations imply strongly correlated network states in a neural population Nature 440 1007
    • (2006) Nature , vol.440 , Issue.7087 , pp. 1007
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 4
    • 34547692641 scopus 로고    scopus 로고
    • Information processing in the primate retina: Circuitry and coding
    • DOI 10.1146/annurev.neuro.30.051606.094252
    • Field G D and Chichilnisky E J 2007 Information processing in the primate retina: circuitry and coding Annu. Rev. Neurosci. 30 1 (Pubitemid 47218749)
    • (2007) Annual Review of Neuroscience , vol.30 , pp. 1-30
    • Field, G.D.1    Chichilnisky, E.J.2
  • 5
    • 0020187981 scopus 로고
    • On the rationale of maximum-entropy methods
    • 10.1109/PROC.1982.12425 0018-9219
    • Jaynes E T 1982 On the rationale of maximum-entropy methods Proc. IEEE 70 939
    • (1982) Proc. IEEE , vol.70 , Issue.9 , pp. 939
    • Jaynes, E.T.1
  • 6
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • 10.1207/s15516709cog0901-7 0364-0213
    • Ackley D H, Hinton G E and Sejnowski T J 1985 A learning algorithm for Boltzmann machines Cognitive Sci. 9 147
    • (1985) Cognitive Sci. , vol.9 , Issue.1 , pp. 147
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 9
    • 79951967267 scopus 로고    scopus 로고
    • The architecture of functional interaction networks in the retina
    • 10.1523/JNEUROSCI.3682-10.2011 0270-6474
    • Ganmor E, Segev Ronen and Schneidman Elad 2011 The architecture of functional interaction networks in the retina J. Neurosci. 31 3044
    • (2011) J. Neurosci. , vol.31 , Issue.8 , pp. 3044
    • Ganmor, E.1    Ronen, S.2    Elad, S.3
  • 11
    • 59149098766 scopus 로고    scopus 로고
    • Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches
    • 10.1371/journal.pcbi.1000271 1553-7358 e1000271
    • Pajevic S and Plenz D 2009 Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches PLoS Comput. Biol. 5 e1000271
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.1
    • Pajevic, S.1    Plenz, D.2
  • 12
    • 77951455815 scopus 로고    scopus 로고
    • High-dimensional Ising model selection using 1-regularized logistic regression
    • 10.1214/09-AOS691 0090-5364
    • Ravikumar P, Wainwright M J and Lafferty J D 2010 High-dimensional Ising model selection using 1-regularized logistic regression Ann. Stat. 38 1287
    • (2010) Ann. Stat. , vol.38 , Issue.3 , pp. 1287
    • Ravikumar, P.1    Wainwright, M.J.2    Lafferty, J.D.3
  • 13
    • 84857876275 scopus 로고    scopus 로고
    • Inverse Ising inference using all the data
    • 10.1103/PhysRevLett.108.090201 0031-9007 090201
    • Aurell E and Ekeberg M 2012 Inverse Ising inference using all the data Phys. Rev. Lett. 108 090201
    • (2012) Phys. Rev. Lett. , vol.108 , Issue.9
    • Aurell, E.1    Ekeberg, M.2
  • 14
    • 64549086225 scopus 로고    scopus 로고
    • Small-correlation expansions for the inverse Ising problem
    • 1751-8113 055001
    • Sessak V and Monasson R 2009 Small-correlation expansions for the inverse Ising problem J. Phys. A: Math. Theor. 42 055001
    • (2009) J. Phys. A: Math. Theor. , vol.42
    • Sessak, V.1    Monasson, R.2
  • 15
    • 69549122188 scopus 로고    scopus 로고
    • Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods
    • 10.1073/pnas.0906705106 0027-8424
    • Cocco S, Leibler S and Monasson R 2009 Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods Proc. Nat. Acad. Sci. 106 14058
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , Issue.33 , pp. 14058
    • Cocco, S.1    Leibler, S.2    Monasson, R.3
  • 16
    • 84866316923 scopus 로고    scopus 로고
    • The Bethe approximation for solving the inverse Ising problem: A comparison with other inference methods
    • 1742-5468 P08015
    • Ricci-Tersenghi F 2012 The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods J. Stat. Mech. P08015
    • (2012) J. Stat. Mech. , vol.2012 , Issue.8
    • Ricci-Tersenghi, F.1
  • 17
    • 84858796180 scopus 로고    scopus 로고
    • The Ising decoder: Reading out the activity of large neural ensembles
    • 10.1007/s10827-011-0342-z 0929-5313
    • Schaub M T and Schultz S R 2011 The Ising decoder: reading out the activity of large neural ensembles J. Comput. Neurosci. 32 101
    • (2011) J. Comput. Neurosci. , vol.32 , Issue.1 , pp. 101
    • Schaub, M.T.1    Schultz, S.R.2
  • 19
    • 81855161540 scopus 로고    scopus 로고
    • New method for parameter estimation in probabilistic models: Minimum probability flow
    • 10.1103/PhysRevLett.107.220601 0031-9007 220601
    • Sohl-Dickstein J, Battaglino P and DeWeese M 2011 New method for parameter estimation in probabilistic models: minimum probability flow Phys. Rev. Lett. 107 220601
    • (2011) Phys. Rev. Lett. , vol.107 , Issue.22
    • Sohl-Dickstein, J.1    Battaglino, P.2    Deweese, M.3
  • 20
    • 79952216403 scopus 로고    scopus 로고
    • Adaptive cluster expansion for inferring Boltzmann machines with noisy data
    • 10.1103/PhysRevLett.106.090601 0031-9007
    • Cocco S and Monasson R 2011 Adaptive cluster expansion for inferring Boltzmann machines with noisy data Phys. Rev. Lett. 106 090601
    • (2011) Phys. Rev. Lett. , vol.106 , Issue.9 , pp. 090601
    • Cocco, S.1    Monasson, R.2
  • 21
    • 84860378914 scopus 로고    scopus 로고
    • Adaptive cluster expansion for the inverse ising problem: Convergence, algorithm and tests
    • 10.1007/s10955-012-0463-4 0022-4715
    • Cocco S and Monasson R 2012 Adaptive cluster expansion for the inverse ising problem: convergence, algorithm and tests J. Stat. Phys. 147 252
    • (2012) J. Stat. Phys. , vol.147 , Issue.2 , pp. 252
    • Cocco, S.1    Monasson, R.2
  • 22
    • 0037421736 scopus 로고    scopus 로고
    • Multineuronal firing patterns in the signal from eye to brain
    • DOI 10.1016/S0896-6273(03)00004-7
    • Schnitzer M J and Meister M 2003 Multineuronal firing patterns in the signal from eye to brain Neuron 37 499 (Pubitemid 36183370)
    • (2003) Neuron , vol.37 , Issue.3 , pp. 499-511
    • Schnitzer, M.J.1    Meister, M.2
  • 23
    • 64649095157 scopus 로고    scopus 로고
    • Prediction of spatiotemporal patterns of neural activity from pairwise correlations
    • 10.1103/PhysRevLett.102.138101 0031-9007
    • Marre O, Boustani S El, Frégnac Y and Destexhe A 2009 Prediction of spatiotemporal patterns of neural activity from pairwise correlations Phys. Rev. Lett. 102 138101
    • (2009) Phys. Rev. Lett. , vol.102 , Issue.13 , pp. 138101
    • Marre, O.1    El, B.S.2    Frégnac, Y.3    Destexhe, A.4
  • 24
    • 21844470231 scopus 로고    scopus 로고
    • Dynamic predictive coding by the retina
    • DOI 10.1038/nature03689
    • Hosoya T, Baccus S A and Meister M 2005 Dynamic predictive coding by the retina Nature 436 71 (Pubitemid 40966187)
    • (2005) Nature , vol.436 , Issue.7047 , pp. 71-77
    • Hosoya, T.1    Baccus, S.A.2    Meister, M.3
  • 25
    • 33646195849 scopus 로고    scopus 로고
    • Functional organization of ganglion cells in the salamander retina
    • 10.1152/jn.00928.2005 0022-3077
    • Segev R, Puchalla J and Berry M J II 2006 Functional organization of ganglion cells in the salamander retina J. Neurophysiol. 95 2277
    • (2006) J. Neurophysiol. , vol.95 , Issue.4 , pp. 2277
    • Segev, R.1    Puchalla, J.2    Berry, M.J.3
  • 26
    • 77049147071 scopus 로고
    • Discharge patterns and functional organization of mammalian retina
    • Kuffler S W 1953 Discharge patterns and functional organization of mammalian retina J. Neurophysiol. 16 37
    • (1953) J. Neurophysiol. , vol.16 , pp. 37
    • Kuffler, S.W.1
  • 27
    • 0017847342 scopus 로고
    • Statistical dependence between neighboring retinal ganglion cells in goldfish
    • Arnett D W 1978 Statistical dependence between neighboring retinal ganglion cells in goldfish Experimental Brain Res. 32 49
    • (1978) Experimental Brain Res. , vol.32 , pp. 49
    • Arnett, D.W.1
  • 28
    • 0024534435 scopus 로고
    • Correlated firing of retinal ganglion cells
    • 10.1016/0166-2236(89)90140-9 0166-2236
    • Mastronarde D N 1989 Correlated firing of retinal ganglion cells Trends Neurosci. 12 75
    • (1989) Trends Neurosci. , vol.12 , Issue.2 , pp. 75
    • Mastronarde, D.N.1
  • 29
    • 0032032741 scopus 로고    scopus 로고
    • Mechanisms of concerted firing among retinal ganglion cells
    • DOI 10.1016/S0896-6273(00)80992-7
    • Brivanlou I H, Warland D K and Meister M 1998 Mechanisms of concerted firing among retinal ganglion cells Neuron 20 527 (Pubitemid 28153082)
    • (1998) Neuron , vol.20 , Issue.3 , pp. 527-539
    • Brivanlou, I.H.1    Warland, D.K.2    Meister, M.3
  • 30
    • 46049120251 scopus 로고    scopus 로고
    • Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex
    • DOI 10.1038/nn.2134, PII NN2134
    • Fujisawa S, Amarasingham A, Harrison M T and Buzsáki G 2008 Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex Nature Neurosci. 11 823 (Pubitemid 351896674)
    • (2008) Nature Neuroscience , vol.11 , Issue.7 , pp. 823-833
    • Fujisawa, S.1    Amarasingham, A.2    Harrison, M.T.3    Buzsaki, G.4
  • 32
    • 0028095260 scopus 로고
    • Reactivation of hippocampal ensemble memories during sleep
    • 10.1126/science.8036517 0036-8075
    • Wilson M A and McNaughton B L 1994 Reactivation of hippocampal ensemble memories during sleep Science 265 676
    • (1994) Science , vol.265 , Issue.5172 , pp. 676
    • Wilson, M.A.1    McNaughton, B.L.2
  • 33
    • 77956895982 scopus 로고    scopus 로고
    • Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution
    • 10.1007/s10827-009-0154-6 0929-5313
    • Peyrache A, Benchenane K, Khamassi M, Wiener S I and Battaglia F P 2009 Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution J. Comput. Neurosci. 29 309
    • (2009) J. Comput. Neurosci. , vol.29 , Issue.1-2 , pp. 309
    • Peyrache, A.1    Benchenane, K.2    Khamassi, M.3    Wiener, S.I.4    Battaglia, F.P.5
  • 34
    • 2142765521 scopus 로고    scopus 로고
    • Multiple neural spike train data analysis: State-of-the-art and future challenges
    • Brown E N, Kass R E and Mitra P P 2004 Multiple neural spike train data analysis: state-of-the-art and future challenges Nature Neurosci. 7 456
    • (2004) Nature Neurosci. , vol.7 , pp. 456
    • Brown, E.N.1    Kass, R.E.2    Mitra, P.P.3
  • 36
    • 69049105412 scopus 로고    scopus 로고
    • How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains
    • Ostojic S, Brunel N and Hakim V 2009 How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains J. Neurosci. 29 10234
    • (2009) J. Neurosci. , vol.29 , pp. 10234
    • Ostojic, S.1    Brunel, N.2    Hakim, V.3
  • 38
    • 0001051762 scopus 로고
    • Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model
    • 0305-4470 035
    • Plefka T 1982 Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model J. Phys. A: Math. Gen. 15 1971
    • (1982) J. Phys. A: Math. Gen. , vol.15 , Issue.6 , pp. 1971
    • Plefka, T.1
  • 39
    • 0001090290 scopus 로고
    • How to expand around mean-field theory using high-temperature expansions
    • 0305-4470 024
    • Georges A and Yedidia J S 1991 How to expand around mean-field theory using high-temperature expansions J. Phys. A: Math. Gen. 24 2173
    • (1991) J. Phys. A: Math. Gen. , vol.24 , Issue.9 , pp. 2173
    • Georges, A.1    Yedidia, J.S.2
  • 42
    • 84996241537 scopus 로고
    • Solution of 'solvable model of a spin glass'
    • 10.1080/14786437708235992 0031-8086
    • Thouless D J, Anderson P W and Palmer R G 1977 Solution of 'solvable model of a spin glass' Phil. Mag. 35 593
    • (1977) Phil. Mag. , vol.35 , Issue.3 , pp. 593
    • Thouless, D.J.1    Anderson, P.W.2    Palmer, R.G.3
  • 43
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T and Tibshirani R 2008 Sparse inverse covariance estimation with the graphical lasso Biostatistics 9 432
    • (2008) Biostatistics , vol.9 , pp. 432
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 44
    • 23844535141 scopus 로고    scopus 로고
    • Cluster variation method in statistical physics and probabilistic graphical models
    • 0305-4470 R01
    • Pelizzola A 2005 Cluster variation method in statistical physics and probabilistic graphical models J. Phys. A: Math. Gen. 38 R309
    • (2005) J. Phys. A: Math. Gen. , vol.38 , Issue.33 , pp. 309
    • Pelizzola, A.1
  • 46
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for l1 regularization: A comparative study and two new approaches
    • Schmidt M, Fung G and Rosales R 2007 Fast optimization methods for l1 regularization: A comparative study and two new approaches Machine Learning: ECML 2007 pp 286-97
    • (2007) Machine Learning: ECML 2007 , pp. 286-297
    • Schmidt, M.1    Fung, G.2    Rosales, R.3
  • 47
    • 77955172914 scopus 로고    scopus 로고
    • Sparse coding and high-order correlations in fine-scale cortical networks
    • 10.1038/nature09178 0028-0836
    • Ohiorhenuan I E, Mechler F, Purpura K P, Schmid A M, Hu Q and Victor J D 2010 Sparse coding and high-order correlations in fine-scale cortical networks Nature 466 617
    • (2010) Nature , vol.466 , Issue.7306 , pp. 617
    • Ohiorhenuan, I.E.1    Mechler, F.2    Purpura, K.P.3    Schmid, A.M.4    Hu, Q.5    Victor, J.D.6
  • 48
    • 58549114185 scopus 로고    scopus 로고
    • Identification of direct residue contacts in protein-protein interaction by message passing
    • 10.1073/pnas.0805923106 0027-8424
    • Weigt M, White R A, Szurmant H, Hoch J A and Hwa T 2009 Identification of direct residue contacts in protein-protein interaction by message passing Proc. Nat. Acad. Sci. 106 67
    • (2009) Proc. Nat. Acad. Sci. , vol.106 , Issue.1 , pp. 67
    • Weigt, M.1    White, R.A.2    Szurmant, H.3    Hoch, J.A.4    Hwa, T.5
  • 49
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • Meinshausen N and Bühlmann P 2006 High-dimensional graphs and variable selection with the lasso Ann. Stat. 34 1436 (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 50
    • 79959354385 scopus 로고    scopus 로고
    • Sparse low-order interaction network underlies a highly correlated and learnable neural population code
    • 10.1073/pnas.1019641108 0027-8424
    • Ganmor E, Segev R and Schneidman E 2011 Sparse low-order interaction network underlies a highly correlated and learnable neural population code Proc. Nat. Acad. Sci. 108 9679
    • (2011) Proc. Nat. Acad. Sci. , vol.108 , Issue.23 , pp. 9679
    • Ganmor, E.1    Segev, R.2    Schneidman, E.3
  • 52
    • 84875285942 scopus 로고    scopus 로고
    • private communication
    • Marre O 2012 private communication
    • (2012)
    • Marre, O.1
  • 54
    • 0043069766 scopus 로고    scopus 로고
    • Organization of cell assemblies in the hippocampus
    • DOI 10.1038/nature01834
    • Harris K D, Csicsvari J, Hirase H, Dragoi G and Buzsáki G 2003 Organization of cell assemblies in the hippocampus Nature 424 552 (Pubitemid 36975776)
    • (2003) Nature , vol.424 , Issue.6948 , pp. 552-556
    • Harris, K.D.1    Csicsvari, J.2    Hirase, H.3    Dragoi, G.4    Buzsaki, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.