메뉴 건너뛰기




Volumn 25, Issue 11, 2016, Pages 5345-5357

Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images

Author keywords

Hyperspectral imagery; sparse representation; statistical characteristic; target detection

Indexed keywords

GAUSSIAN NOISE (ELECTRONIC); REMOTE SENSING; SAMPLING; SPECTROSCOPY; TARGET TRACKING;

EID: 84991246531     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2016.2601268     Document Type: Article
Times cited : (170)

References (42)
  • 1
    • 84901402355 scopus 로고    scopus 로고
    • Hyperspectral image classification through bilayer graph-based learning
    • Jul.
    • Y. Gao, R. Ji, P. Cui, Q. Dai, G. Hua, "Hyperspectral image classification through bilayer graph-based learning," IEEE Trans. Image Process., vol. 23, no. 7, pp. 2769-2778, Jul. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.7 , pp. 2769-2778
    • Gao, Y.1    Ji, R.2    Cui, P.3    Dai, Q.4    Hua, G.5
  • 2
    • 84896397988 scopus 로고    scopus 로고
    • Subspace matching pursuit for sparse unmixing of hyperspectral data
    • Jun.
    • Z. Shi, W. Tang, Z. Duren, Z. Jiang, "Subspace matching pursuit for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3256-3274, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3256-3274
    • Shi, Z.1    Tang, W.2    Duren, Z.3    Jiang, Z.4
  • 3
    • 84255178228 scopus 로고    scopus 로고
    • Anomaly detection and reconstruction from random projections
    • Jan.
    • J. E. Fowler and Q. Du, "Anomaly detection and reconstruction from random projections," IEEE Trans. Image Process., vol. 21, no. 1, pp. 184-195, Jan. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.1 , pp. 184-195
    • Fowler, J.E.1    Du, Q.2
  • 4
    • 84904321672 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation
    • Aug.
    • M. A. Veganzones, G. Tochon, M. Dalla-Mura, A. J. Plaza, J. Chanussot, "Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation," IEEE Trans. Image Process., vol. 23, no. 8, pp. 3574-3589, Aug. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.8 , pp. 3574-3589
    • Veganzones, M.A.1    Tochon, G.2    Dalla-Mura, M.3    Plaza, A.J.4    Chanussot, J.5
  • 5
    • 85032750872 scopus 로고    scopus 로고
    • Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms
    • Jan.
    • D. Manolakis, E. Truslow, M. Pieper, T. Cooley, M. Brueggeman, "Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 24-33, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 24-33
    • Manolakis, D.1    Truslow, E.2    Pieper, M.3    Cooley, T.4    Brueggeman, M.5
  • 6
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • Jan.
    • G. Camps-Valls, D. Tuia, L. Bruzzone, J. A. Benediktsson, "Advances in hyperspectral image classification: Earth monitoring with statistical learning methods," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 45-54, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 7
    • 80053384184 scopus 로고    scopus 로고
    • Resolution and segmentation of hyperspectral biomedical images by multivariate curve resolution-alternating least squares
    • S. Piqueras, L. Duponchel, R. Tauler, A. de Juan, "Resolution and segmentation of hyperspectral biomedical images by multivariate curve resolution-alternating least squares," Anal. Chim. Acta., vol. 705, nos. 1-2, pp. 182-192, 2011.
    • (2011) Anal. Chim. Acta. , vol.705 , Issue.1-2 , pp. 182-192
    • Piqueras, S.1    Duponchel, L.2    Tauler, R.3    De Juan, A.4
  • 8
    • 84880031588 scopus 로고    scopus 로고
    • Chemometric strategies to unmix information and increase the spatial description of hyperspectral images: A single-cell case study
    • S. Piqueras, L. Duponchel, M. Offroy, F. Jamme, R. Tauler, A. de Juan, "Chemometric strategies to unmix information and increase the spatial description of hyperspectral images: A single-cell case study," Anal. Chem., vol. 85, no. 13, pp. 6303-6311, 2013.
    • (2013) Anal. Chem. , vol.85 , Issue.13 , pp. 6303-6311
    • Piqueras, S.1    Duponchel, L.2    Offroy, M.3    Jamme, F.4    Tauler, R.5    De Juan, A.6
  • 9
    • 84861723546 scopus 로고    scopus 로고
    • Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data
    • Apr.
    • G. Martin and A. Plaza, "Spatial-spectral preprocessing prior to endmember identification and unmixing of remotely sensed hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 380-395, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 380-395
    • Martin, G.1    Plaza, A.2
  • 10
    • 84857061095 scopus 로고    scopus 로고
    • Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging
    • Mar.
    • D. F. Barbin, G. ElMasry, D. W. Sun, P. Allen, "Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging," Anal. Chim. Acta., vol. 719, pp. 30-42, Mar. 2012.
    • (2012) Anal. Chim. Acta. , vol.719 , pp. 30-42
    • Barbin, D.F.1    ElMasry, G.2    Sun, D.W.3    Allen, P.4
  • 11
    • 85027918197 scopus 로고    scopus 로고
    • Oil detection in the coastal marshes of Louisiana using MESMA applied to band subsets of AVIRIS data
    • Mar.
    • S. H. Peterson, D. A. Roberts, M. Beland, R. F. Kokaly, S. L. Ustin, "Oil detection in the coastal marshes of Louisiana using MESMA applied to band subsets of AVIRIS data," Remote Sens. Environ., vol. 159, pp. 222-231, Mar. 2015.
    • (2015) Remote Sens. Environ. , vol.159 , pp. 222-231
    • Peterson, S.H.1    Roberts, D.A.2    Beland, M.3    Kokaly, R.F.4    Ustin, S.L.5
  • 12
    • 84897586091 scopus 로고    scopus 로고
    • Medical hyperspectral imaging: A review
    • G. Lu and B. Fei, "Medical hyperspectral imaging: A review," J. Biomed. Opt., vol. 19, no. 1, p. 010901, 2014.
    • (2014) J. Biomed. Opt. , vol.19 , Issue.1 , pp. 010901
    • Lu, G.1    Fei, B.2
  • 13
    • 0036564142 scopus 로고    scopus 로고
    • Target signature-constrained mixed pixel classification for hyperspectral imagery
    • May
    • C.-I. Chang, "Target signature-constrained mixed pixel classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1065-1081, May 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.5 , pp. 1065-1081
    • Chang, C.-I.1
  • 14
    • 84931572289 scopus 로고    scopus 로고
    • Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    • L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, B. Du, "Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding," Pattern Recognit., vol. 48, no. 10, pp. 3102-3112, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3102-3112
    • Zhang, L.1    Zhang, Q.2    Zhang, L.3    Tao, D.4    Huang, X.5    Du, B.6
  • 15
    • 84891011267 scopus 로고    scopus 로고
    • Sparse transfer manifold embedding for hyperspectral target detection
    • Feb.
    • L. Zhang, L. Zhang, D. Tao, X. Huang, "Sparse transfer manifold embedding for hyperspectral target detection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.2 , pp. 1030-1043
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 16
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Jan.
    • D. Manolakis and G. S. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.S.2
  • 17
    • 69949179956 scopus 로고    scopus 로고
    • Is there a best hyperspectral detection algorithm?
    • Apr.
    • D. Manolakis, R. Lockwood, T. Cooley, J. Jacobson, "Is there a best hyperspectral detection algorithm?" Proc. SPIE, vol. 7334, no. 1, p. 733402, Apr. 2009.
    • (2009) Proc. SPIE , vol.7334 , Issue.1 , pp. 733402
    • Manolakis, D.1    Lockwood, R.2    Cooley, T.3    Jacobson, J.4
  • 18
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, G. A. Shaw, "Hyperspectral image processing for automatic target detection applications," Lincoln Lab. J., vol. 14, no. 1, pp. 79-116, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 19
  • 20
    • 78049504976 scopus 로고    scopus 로고
    • Kernel-based regularizedangle spectral matching for target detection in hyperspectral imagery
    • Y. Gu, C. Wang, S. Wang, Y. Zhang, "Kernel-based regularizedangle spectral matching for target detection in hyperspectral imagery," Pattern Recognit. Lett., vol. 32, no. 2, pp. 114-119, 2011.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.2 , pp. 114-119
    • Gu, Y.1    Wang, C.2    Wang, S.3    Zhang, Y.4
  • 21
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Jan.
    • Y. Chen, N. M. Nasrabadi, T. D. Tran, "Hyperspectral image classification via kernel sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 217-231, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 22
    • 84870541423 scopus 로고    scopus 로고
    • Exploiting sparsity in hyperspectral image classification via graphical models
    • May
    • U. Srinivas, Y. Chen, V. Monga, N. M. Nasrabadi, T. D. Tran, "Exploiting sparsity in hyperspectral image classification via graphical models," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 505-509, May 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.3 , pp. 505-509
    • Srinivas, U.1    Chen, Y.2    Monga, V.3    Nasrabadi, N.M.4    Tran, T.D.5
  • 23
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspectral image enhancement
    • Apr.
    • Z. Guo, T. Wittman, S. Osher, "L1 unmixing and its application to hyperspectral image enhancement," Proc. SPIE, vol. 7334, p. 73341M, Apr. 2009.
    • (2009) Proc. SPIE , vol.7334 , pp. 73341M
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 24
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • Nov.
    • L. Zhang, M. Yang, X. Feng, "Sparse representation or collaborative representation: Which helps face recognition?" in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 471-478.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis. , pp. 471-478
    • Zhang, L.1    Yang, M.2    Feng, X.3
  • 26
    • 84891629419 scopus 로고    scopus 로고
    • Robust face recognition via occlusion dictionary learning
    • Apr.
    • W. Ou, X. You, D. Tao, P. Zhang, Y. Tang, Z. Zhu, "Robust face recognition via occlusion dictionary learning," Pattern Recognit., vol. 47, no. 4, pp. 1559-1572, Apr. 2014.
    • (2014) Pattern Recognit. , vol.47 , Issue.4 , pp. 1559-1572
    • Ou, W.1    You, X.2    Tao, D.3    Zhang, P.4    Tang, Y.5    Zhu, Z.6
  • 27
    • 84871666572 scopus 로고    scopus 로고
    • Double shrinking sparse dimension reduction
    • Jan.
    • T. Zhou and D. Tao, "Double shrinking sparse dimension reduction," IEEE Trans. Image Process., vol. 22, no. 1, pp. 244-257, Jan. 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.1 , pp. 244-257
    • Zhou, T.1    Tao, D.2
  • 28
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery
    • Jun.
    • Y. Chen, N. M. Nasrabadi, T. D. Tran, "Sparse representation for target detection in hyperspectral imagery," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 629-640, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 29
    • 85032752318 scopus 로고    scopus 로고
    • Hyperspectral target detection: An overview of current and future challenges
    • Jan.
    • N. M. Nasrabadi, "Hyperspectral target detection: An overview of current and future challenges," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 34-44, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 34-44
    • Nasrabadi, N.M.1
  • 30
    • 85032751606 scopus 로고    scopus 로고
    • Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, target detection
    • Jan.
    • R. M. Willett, M. F. Duarte, M. A. Davenport, R. G. Baraniuk, "Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, target detection," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 116-126, Jan. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 116-126
    • Willett, R.M.1    Duarte, M.F.2    Davenport, M.A.3    Baraniuk, R.G.4
  • 31
    • 77952743135 scopus 로고    scopus 로고
    • Computational methods for sparse solution of linear inverse problems
    • Jun.
    • J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear inverse problems," Proc. IEEE, vol. 98, no. 6, pp. 948-958, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 948-958
    • Tropp, J.A.1    Wright, S.J.2
  • 32
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Dec.
    • J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 33
    • 0344082849 scopus 로고    scopus 로고
    • Dual-window-based anomaly detection for hyperspectral imagery
    • Sep.
    • H. Kwon, S. Z. Der, N. M. Nasrabadi, "Dual-window-based anomaly detection for hyperspectral imagery," Proc. SPIE, vol. 5094, pp. 148-158, Sep. 2003.
    • (2003) Proc. SPIE , vol.5094 , pp. 148-158
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 34
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Banerjee, P. Burlina, C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 35
    • 0022686270 scopus 로고
    • An adaptive detection algorithm
    • Mar.
    • E. J. Kelly, "An adaptive detection algorithm," IEEE Trans. Aerosp. Electron. Syst., vol. 22, no. 2, pp. 115-127, Mar. 1986.
    • (1986) IEEE Trans. Aerosp. Electron. Syst. , vol.22 , Issue.2 , pp. 115-127
    • Kelly, E.J.1
  • 36
    • 0032658498 scopus 로고    scopus 로고
    • The CFAR adaptive subspace detector is a scale-invariant GLRT
    • Sep.
    • S. Kraut and L. L. Scharf, "The CFAR adaptive subspace detector is a scale-invariant GLRT," IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2538-2541, Sep. 1999.
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.9 , pp. 2538-2541
    • Kraut, S.1    Scharf, L.L.2
  • 38
    • 13244255508 scopus 로고    scopus 로고
    • The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic
    • Feb.
    • S. Kraut, L. L. Scharf, R. W. Butler, "The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic," IEEE Trans. Signal Process., vol. 53, no. 2, pp. 427-438, Feb. 2005.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.2 , pp. 427-438
    • Kraut, S.1    Scharf, L.L.2    Butler, R.W.3
  • 39
    • 84888290238 scopus 로고    scopus 로고
    • Regularization framework for target detection in hyperspectral imagery
    • Jan.
    • Y. Zhang, B. Du, L. Zhang, "Regularization framework for target detection in hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 313-317, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 313-317
    • Zhang, Y.1    Du, B.2    Zhang, L.3
  • 40
    • 84877922661 scopus 로고    scopus 로고
    • A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection
    • Apr.
    • T. Wang, B. Du, L. Zhang, "A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens., vol. 6, no. 2, pp. 626-637, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. , vol.6 , Issue.2 , pp. 626-637
    • Wang, T.1    Du, B.2    Zhang, L.3
  • 41
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves
    • J. Davis and M. Goadrich, "The relationship between precision-recall and ROC curves," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 233-240.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 42
    • 56249097923 scopus 로고    scopus 로고
    • Performance evaluation for hyperspectral target detection algorithms
    • X. Sun, N. Li, H.-J. Zhao, "Performance evaluation for hyperspectral target detection algorithms," Proc. SPIE, vol. 7127, pp. 712725-712726, 2008.
    • (2008) Proc. SPIE , vol.7127 , pp. 712725-712726
    • Sun, X.1    Li, N.2    Zhao, H.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.