-
1
-
-
84891833699
-
25th anniversary article: rational design and applications of hydrogels in regenerative medicine
-
[1] Annabi, N., Tamayol, A., Uquillas, J.A., Akbari, M., Bertassoni, L.E., Cha, C., et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26:1 (2014), 85–124.
-
(2014)
Adv. Mater.
, vol.26
, Issue.1
, pp. 85-124
-
-
Annabi, N.1
Tamayol, A.2
Uquillas, J.A.3
Akbari, M.4
Bertassoni, L.E.5
Cha, C.6
-
2
-
-
26944496892
-
Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications
-
1999-05-18
-
[2] Dai, L., Conjugated and fullerene-containing polymers for electronic and photonic applications: advanced syntheses and microlithographic fabrications. J. Macromol. Sci. C 39:2 (1999), 273–387 1999-05-18.
-
(1999)
J. Macromol. Sci. C
, vol.39
, Issue.2
, pp. 273-387
-
-
Dai, L.1
-
3
-
-
21244463123
-
An organic electronics primer
-
[3] Malliaras, G., Friend, R., An organic electronics primer. Phys. Today 58:5 (2005), 53–58.
-
(2005)
Phys. Today
, vol.58
, Issue.5
, pp. 53-58
-
-
Malliaras, G.1
Friend, R.2
-
4
-
-
84863229467
-
Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications
-
[4] Li, Y., Rodrigues, J., Tomas, H., Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41:6 (2012), 2193–2221.
-
(2012)
Chem. Soc. Rev.
, vol.41
, Issue.6
, pp. 2193-2221
-
-
Li, Y.1
Rodrigues, J.2
Tomas, H.3
-
5
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
[5] Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J., et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:36 (2013), 5011–5028.
-
(2013)
Adv. Mater.
, vol.25
, Issue.36
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jüngst, T.4
Hennink, W.E.5
Dhert, W.J.6
-
6
-
-
84891835083
-
25th anniversary article: designer hydrogels for cell cultures: a materials selection guide
-
[6] Thiele, J., Ma, Y., Bruekers, S., Ma, S., Huck, W.T., 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26:1 (2014), 125–148.
-
(2014)
Adv. Mater.
, vol.26
, Issue.1
, pp. 125-148
-
-
Thiele, J.1
Ma, Y.2
Bruekers, S.3
Ma, S.4
Huck, W.T.5
-
7
-
-
75249089392
-
Electroconductive hydrogels: synthesis, characterization and biomedical applications
-
[7] Guiseppi-Elie, A., Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:10 (2010), 2701–2716.
-
(2010)
Biomaterials
, vol.31
, Issue.10
, pp. 2701-2716
-
-
Guiseppi-Elie, A.1
-
8
-
-
84884548341
-
3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices
-
[8] Zhao, Y., Liu, B., Pan, L., Yu, G., 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 6:10 (2013), 2856–2870.
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.10
, pp. 2856-2870
-
-
Zhao, Y.1
Liu, B.2
Pan, L.3
Yu, G.4
-
9
-
-
78951492580
-
Cellulose-based hydrogels: present status and application prospects
-
2011-02-11
-
[9] Chang, C., Zhang, L., Cellulose-based hydrogels: present status and application prospects. Carbohyd. Polym. 84:1 (2011), 40–53 2011-02-11.
-
(2011)
Carbohyd. Polym.
, vol.84
, Issue.1
, pp. 40-53
-
-
Chang, C.1
Zhang, L.2
-
10
-
-
0034575519
-
Physicochemical foundations and structural design of hydrogels in medicine and biology
-
2000-08-01
-
[10] Peppas, N.A., Huang, Y., Torres-Lugo, M., Ward, J.H., Zhang, J., Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2:1 (2000), 9–29 2000-08-01.
-
(2000)
Annu. Rev. Biomed. Eng.
, vol.2
, Issue.1
, pp. 9-29
-
-
Peppas, N.A.1
Huang, Y.2
Torres-Lugo, M.3
Ward, J.H.4
Zhang, J.5
-
11
-
-
79953067209
-
Hyaluronic acid hydrogels for biomedical applications
-
2011-01-01
-
[11] Burdick, J.A., Prestwich, G.D., Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23:12 (2011), H41–H56 2011-01-01.
-
(2011)
Adv. Mater.
, vol.23
, Issue.12
, pp. H41-H56
-
-
Burdick, J.A.1
Prestwich, G.D.2
-
12
-
-
84878858093
-
Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique
-
[12] Zhang, H., Zhang, F., Wu, J., Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React. Funct. Polym. 73:7 (2013), 923–928.
-
(2013)
React. Funct. Polym.
, vol.73
, Issue.7
, pp. 923-928
-
-
Zhang, H.1
Zhang, F.2
Wu, J.3
-
13
-
-
78649444992
-
Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro
-
[13] Young, J.L., Engler, A.J., Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32:4 (2011), 1002–1009.
-
(2011)
Biomaterials
, vol.32
, Issue.4
, pp. 1002-1009
-
-
Young, J.L.1
Engler, A.J.2
-
14
-
-
70849114663
-
Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives
-
[14] Oh, E.J., Park, K., Kim, K.S., Kim, J., Yang, J., Kong, J., et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J. Control Release 141:1 (2010), 2–12.
-
(2010)
J. Control Release
, vol.141
, Issue.1
, pp. 2-12
-
-
Oh, E.J.1
Park, K.2
Kim, K.S.3
Kim, J.4
Yang, J.5
Kong, J.6
-
15
-
-
64549130908
-
Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels
-
[15] Khetan, S., Katz, J.S., Burdick, J.A., Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Mat. 5:8 (2009), 1601–1606.
-
(2009)
Soft Mat.
, vol.5
, Issue.8
, pp. 1601-1606
-
-
Khetan, S.1
Katz, J.S.2
Burdick, J.A.3
-
16
-
-
84860280313
-
Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics
-
[16] Guvendiren, M., Burdick, J.A., Stiffening hydrogels to probe short-and long-term cellular responses to dynamic mechanics. Nat. Commun., 3, 2012, 792.
-
(2012)
Nat. Commun.
, vol.3
, pp. 792
-
-
Guvendiren, M.1
Burdick, J.A.2
-
17
-
-
0032941232
-
Alginate hydrogels as synthetic extracellular matrix materials
-
1999-01-01
-
[17] Rowley, J.A., Madlambayan, G., Mooney, D.J., Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:1 (1999), 45–53 1999-01-01.
-
(1999)
Biomaterials
, vol.20
, Issue.1
, pp. 45-53
-
-
Rowley, J.A.1
Madlambayan, G.2
Mooney, D.J.3
-
18
-
-
33748321119
-
Alginate hydrogels as biomaterials
-
2006-01-01
-
[18] Augst, A.D., Kong, H.J., Mooney, D.J., Alginate hydrogels as biomaterials. Macromol. Biosci. 6:8 (2006), 623–633 2006-01-01.
-
(2006)
Macromol. Biosci.
, vol.6
, Issue.8
, pp. 623-633
-
-
Augst, A.D.1
Kong, H.J.2
Mooney, D.J.3
-
19
-
-
84929469257
-
Seaweed polysaccharides and their potential biomedical applications
-
2015-01-01
-
[19] Venkatesan, J., Lowe, B., Anil, S., Manivasagan, P., Kheraif, A.A.A., Kang, K., et al. Seaweed polysaccharides and their potential biomedical applications. Starch – Stärke 67:5–6 (2015), 381–390 2015-01-01.
-
(2015)
Starch – Stärke
, vol.67
, Issue.5-6
, pp. 381-390
-
-
Venkatesan, J.1
Lowe, B.2
Anil, S.3
Manivasagan, P.4
Kheraif, A.A.A.5
Kang, K.6
-
20
-
-
80052752102
-
Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering
-
2011-09-01
-
[20] Rocha, P.M., Santo, V.E., Gomes, M.E., Reis, R.L., Mano, J.F., Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J. Bioact. Compat. Pol. 26:5 (2011), 493–507 2011-09-01.
-
(2011)
J. Bioact. Compat. Pol.
, vol.26
, Issue.5
, pp. 493-507
-
-
Rocha, P.M.1
Santo, V.E.2
Gomes, M.E.3
Reis, R.L.4
Mano, J.F.5
-
21
-
-
67049117927
-
Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications
-
2009-06-08
-
[21] Santo, V.E., Frias, A.M., Carida, M., Cancedda, R., Gomes, M.E., Mano, J.F., et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10:6 (2009), 1392–1401 2009-06-08.
-
(2009)
Biomacromolecules
, vol.10
, Issue.6
, pp. 1392-1401
-
-
Santo, V.E.1
Frias, A.M.2
Carida, M.3
Cancedda, R.4
Gomes, M.E.5
Mano, J.F.6
-
22
-
-
33847396212
-
Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering
-
[22] Thébaud, N., Pierron, D., Bareille, R., Le Visage, C., Letourneur, D., Bordenave, L., Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering. J. Mater. Sci. Mater. Med. 18:2 (2007), 339–345.
-
(2007)
J. Mater. Sci. Mater. Med.
, vol.18
, Issue.2
, pp. 339-345
-
-
Thébaud, N.1
Pierron, D.2
Bareille, R.3
Le Visage, C.4
Letourneur, D.5
Bordenave, L.6
-
23
-
-
84896325304
-
Biofunctionalization of Ulvan Scaffolds for bone tissue engineering
-
2014-03-12
-
[23] Dash, M., Samal, S.K., Bartoli, C., Morelli, A., Smet, P.F., Dubruel, P., et al. Biofunctionalization of Ulvan Scaffolds for bone tissue engineering. ACS Appl. Mater. Inter. 6:5 (2014), 3211–3218 2014-03-12.
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, Issue.5
, pp. 3211-3218
-
-
Dash, M.1
Samal, S.K.2
Bartoli, C.3
Morelli, A.4
Smet, P.F.5
Dubruel, P.6
-
24
-
-
84960116814
-
In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system
-
[24] Ullah, M.W., Ul-Islam, M., Khan, S., Kim, Y., Jang, J.H., Park, J.K., In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Adv. 6:27 (2016), 22424–22435.
-
(2016)
RSC Adv.
, vol.6
, Issue.27
, pp. 22424-22435
-
-
Ullah, M.W.1
Ul-Islam, M.2
Khan, S.3
Kim, Y.4
Jang, J.H.5
Park, J.K.6
-
25
-
-
84867895010
-
Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose
-
[25] Ul-Islam, M., Ha, J.H., Khan, T., Park, J.K., Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohyd. Polym. 92:1 (2013), 360–366.
-
(2013)
Carbohyd. Polym.
, vol.92
, Issue.1
, pp. 360-366
-
-
Ul-Islam, M.1
Ha, J.H.2
Khan, T.3
Park, J.K.4
-
26
-
-
84893077370
-
Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications
-
[26] Ul-Islam, M., Khattak, W.A., Ullah, M.W., Khan, S., Park, J.K., Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:1 (2014), 433–447.
-
(2014)
Cellulose
, vol.21
, Issue.1
, pp. 433-447
-
-
Ul-Islam, M.1
Khattak, W.A.2
Ullah, M.W.3
Khan, S.4
Park, J.K.5
-
27
-
-
84983356574
-
High strength cellulose composite films reinforced with clay for applications as antibacterial materials
-
[27] Xu, D., Cai, J., Zhang, L., High strength cellulose composite films reinforced with clay for applications as antibacterial materials. Chin. J. Polym. Sci. 34:10 (2016), 1281–1289.
-
(2016)
Chin. J. Polym. Sci.
, vol.34
, Issue.10
, pp. 1281-1289
-
-
Xu, D.1
Cai, J.2
Zhang, L.3
-
28
-
-
0042378922
-
Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl
-
[28] Striegel, A.M., Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J. Chil. Chem. Soc. 48:1 (2003), 73–77.
-
(2003)
J. Chil. Chem. Soc.
, vol.48
, Issue.1
, pp. 73-77
-
-
Striegel, A.M.1
-
29
-
-
33750953241
-
Interactions between cellulose and N-methylmorpholine-N-oxide
-
[29] Zhao, H., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., Holladay, J.E., Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohyd. Polym. 67:1 (2007), 97–103.
-
(2007)
Carbohyd. Polym.
, vol.67
, Issue.1
, pp. 97-103
-
-
Zhao, H.1
Kwak, J.H.2
Wang, Y.3
Franz, J.A.4
White, J.M.5
Holladay, J.E.6
-
30
-
-
84921968084
-
Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility
-
[30] Khan, S., Ul-Islam, M., Khattak, W.A., Ullah, M.W., Park, J.K., Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:1 (2015), 565–579.
-
(2015)
Cellulose
, vol.22
, Issue.1
, pp. 565-579
-
-
Khan, S.1
Ul-Islam, M.2
Khattak, W.A.3
Ullah, M.W.4
Park, J.K.5
-
31
-
-
65649123044
-
A novel cellulose hydrogel prepared from its ionic liquid solution
-
[31] Li, L., Lin, Z., Yang, X., Wan, Z., Cui, S., A novel cellulose hydrogel prepared from its ionic liquid solution. Chin. Sci. Bull. 54:9 (2009), 1622–1625.
-
(2009)
Chin. Sci. Bull.
, vol.54
, Issue.9
, pp. 1622-1625
-
-
Li, L.1
Lin, Z.2
Yang, X.3
Wan, Z.4
Cui, S.5
-
32
-
-
84893706467
-
Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel
-
[32] Kunchornsup, W., Sirivat, A., Thermo-electromechanical responses of 1-butyl-3-methylimidazolium chloride ionic liquid-cellulose gel. J. Polym. Res. 21:3 (2014), 1–9.
-
(2014)
J. Polym. Res.
, vol.21
, Issue.3
, pp. 1-9
-
-
Kunchornsup, W.1
Sirivat, A.2
-
33
-
-
34547762876
-
Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution
-
[33] Zhou, J., Chang, C., Zhang, R., Zhang, L., Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7:6 (2007), 804–809.
-
(2007)
Macromol. Biosci.
, vol.7
, Issue.6
, pp. 804-809
-
-
Zhou, J.1
Chang, C.2
Zhang, R.3
Zhang, L.4
-
34
-
-
84937509819
-
An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres
-
2015-10-01
-
[34] Luo, X., Zeng, J., Liu, S., Zhang, L., An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres. Bioresour. Technol. 194 (2015), 403–406 2015-10-01.
-
(2015)
Bioresour. Technol.
, vol.194
, pp. 403-406
-
-
Luo, X.1
Zeng, J.2
Liu, S.3
Zhang, L.4
-
35
-
-
84944266186
-
Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system
-
[35] Ullah, M.W., Ul-Islam, M., Khan, S., Kim, Y., Park, J.K., Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohyd. Polym. 136 (2016), 908–916.
-
(2016)
Carbohyd. Polym.
, vol.136
, pp. 908-916
-
-
Ullah, M.W.1
Ul-Islam, M.2
Khan, S.3
Kim, Y.4
Park, J.K.5
-
36
-
-
84934755423
-
Innovative production of bio-cellulose using a cell-free system derived from a single cell line
-
[36] Ullah, M.W., Ul-Islam, M., Khan, S., Kim, Y., Park, J.K., Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohyd. Polym. 132 (2015), 286–294.
-
(2015)
Carbohyd. Polym.
, vol.132
, pp. 286-294
-
-
Ullah, M.W.1
Ul-Islam, M.2
Khan, S.3
Kim, Y.4
Park, J.K.5
-
37
-
-
84955439868
-
Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel
-
[37] Gao, X., Shi, Z., Lau, A., Liu, C., Yang, G., Silberschmidt, V.V., Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Mater. Sci. Eng. C 62 (2016), 130–136.
-
(2016)
Mater. Sci. Eng. C
, vol.62
, pp. 130-136
-
-
Gao, X.1
Shi, Z.2
Lau, A.3
Liu, C.4
Yang, G.5
Silberschmidt, V.V.6
-
38
-
-
10644224495
-
High mechanical strength double-network hydrogel with bacterial cellulose
-
[38] Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata, T., et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 14:11 (2004), 1124–1128.
-
(2004)
Adv. Funct. Mater.
, vol.14
, Issue.11
, pp. 1124-1128
-
-
Nakayama, A.1
Kakugo, A.2
Gong, J.P.3
Osada, Y.4
Takai, M.5
Erata, T.6
-
39
-
-
84927946676
-
Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests
-
[39] Gao, X., Shi, Z., Liu, C., Yang, G., Sevostianov, I., Silberschmidt, V.V., Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests. Polym. Test. 44 (2015), 82–92.
-
(2015)
Polym. Test.
, vol.44
, pp. 82-92
-
-
Gao, X.1
Shi, Z.2
Liu, C.3
Yang, G.4
Sevostianov, I.5
Silberschmidt, V.V.6
-
40
-
-
45949091582
-
An estimation of the Young's modulus of bacterial cellulose filaments
-
[40] Hsieh, Y., Yano, H., Nogi, M., Eichhorn, S.J., An estimation of the Young's modulus of bacterial cellulose filaments. Cellulose 15:4 (2008), 507–513.
-
(2008)
Cellulose
, vol.15
, Issue.4
, pp. 507-513
-
-
Hsieh, Y.1
Yano, H.2
Nogi, M.3
Eichhorn, S.J.4
-
41
-
-
22444450379
-
Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy
-
[41] Guhados, G., Wan, W., Hutter, J.L., Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:14 (2005), 6642–6646.
-
(2005)
Langmuir
, vol.21
, Issue.14
, pp. 6642-6646
-
-
Guhados, G.1
Wan, W.2
Hutter, J.L.3
-
42
-
-
84876680617
-
Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation
-
[42] Fu, L., Zhou, P., Zhang, S., Yang, G., Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C 33:5 (2013), 2995–3000.
-
(2013)
Mater. Sci. Eng. C
, vol.33
, Issue.5
, pp. 2995-3000
-
-
Fu, L.1
Zhou, P.2
Zhang, S.3
Yang, G.4
-
43
-
-
0345381941
-
Tensile deformation of bacterial cellulose composites
-
[43] Astley, O.M., Chanliaud, E., Donald, A.M., Gidley, M.J., Tensile deformation of bacterial cellulose composites. Int. J. Biol. Macromol. 32:1 (2003), 28–35.
-
(2003)
Int. J. Biol. Macromol.
, vol.32
, Issue.1
, pp. 28-35
-
-
Astley, O.M.1
Chanliaud, E.2
Donald, A.M.3
Gidley, M.J.4
-
44
-
-
72849132136
-
Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524
-
[44] McKenna, B.A., Mikkelsen, D., Wehr, J.B., Gidley, M.J., Menzies, N.W., Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by gluconacetobacter xylinus strain ATCC 53524. Cellulose 16:6 (2009), 1047–1055.
-
(2009)
Cellulose
, vol.16
, Issue.6
, pp. 1047-1055
-
-
McKenna, B.A.1
Mikkelsen, D.2
Wehr, J.B.3
Gidley, M.J.4
Menzies, N.W.5
-
45
-
-
84879963352
-
Nano-cellulose 3D-networks as controlled-release drug carriers
-
[45] Huang, L., Chen, X., Nguyen, T.X., Tang, H., Zhang, L., Yang, G., Nano-cellulose 3D-networks as controlled-release drug carriers. J. Mater. Chem. B 1:23 (2013), 2976–2984.
-
(2013)
J. Mater. Chem. B
, vol.1
, Issue.23
, pp. 2976-2984
-
-
Huang, L.1
Chen, X.2
Nguyen, T.X.3
Tang, H.4
Zhang, L.5
Yang, G.6
-
46
-
-
84924421480
-
Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip
-
[46] Li, Y., Wang, S., Huang, R., Huang, Z., Hu, B., Zheng, W., et al. Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromolecules 16:3 (2015), 780–789.
-
(2015)
Biomacromolecules
, vol.16
, Issue.3
, pp. 780-789
-
-
Li, Y.1
Wang, S.2
Huang, R.3
Huang, Z.4
Hu, B.5
Zheng, W.6
-
47
-
-
84870298635
-
Present status and applications of bacterial cellulose-based materials for skin tissue repair
-
[47] Fu, L., Zhang, J., Yang, G., Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd. Polym. 92:2 (2013), 1432–1442.
-
(2013)
Carbohyd. Polym.
, vol.92
, Issue.2
, pp. 1432-1442
-
-
Fu, L.1
Zhang, J.2
Yang, G.3
-
48
-
-
3242655507
-
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
-
[48] Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:4 (2005), 419–431.
-
(2005)
Biomaterials
, vol.26
, Issue.4
, pp. 419-431
-
-
Svensson, A.1
Nicklasson, E.2
Harrah, T.3
Panilaitis, B.4
Kaplan, D.L.5
Brittberg, M.6
-
49
-
-
0035505468
-
Bacterial synthesized cellulose—artificial blood vessels for microsurgery
-
[49] Klemm, D., Schumann, D., Udhardt, U., Marsch, S., Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog. Polym. Sci. 26:9 (2001), 1561–1603.
-
(2001)
Prog. Polym. Sci.
, vol.26
, Issue.9
, pp. 1561-1603
-
-
Klemm, D.1
Schumann, D.2
Udhardt, U.3
Marsch, S.4
-
50
-
-
71549139410
-
Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial
-
[50] Wang, J., Gao, C., Zhang, Y., Wan, Y., Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater. Sci. Eng. C 30:1 (2010), 214–218.
-
(2010)
Mater. Sci. Eng. C
, vol.30
, Issue.1
, pp. 214-218
-
-
Wang, J.1
Gao, C.2
Zhang, Y.3
Wan, Y.4
-
51
-
-
28744448243
-
Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
-
[51] Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B., et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:9 (2006), 2141–2149.
-
(2006)
Biomaterials
, vol.27
, Issue.9
, pp. 2141-2149
-
-
Bäckdahl, H.1
Helenius, G.2
Bodin, A.3
Nannmark, U.4
Johansson, B.R.5
Risberg, B.6
-
52
-
-
77955914594
-
Microporous bacterial cellulose as a potential scaffold for bone regeneration
-
[52] Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., Gatenholm, P., Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 6:7 (2010), 2540–2547.
-
(2010)
Acta Biomater.
, vol.6
, Issue.7
, pp. 2540-2547
-
-
Zaborowska, M.1
Bodin, A.2
Bäckdahl, H.3
Popp, J.4
Goldstein, A.5
Gatenholm, P.6
-
53
-
-
60749136133
-
Engineering microporosity in bacterial cellulose scaffolds
-
[53] Bäckdahl, H., Esguerra, M., Delbro, D., Risberg, B., Gatenholm, P., Engineering microporosity in bacterial cellulose scaffolds. J. Tissue Eng. Regen. M. 2:6 (2008), 320–330.
-
(2008)
J. Tissue Eng. Regen. M.
, vol.2
, Issue.6
, pp. 320-330
-
-
Bäckdahl, H.1
Esguerra, M.2
Delbro, D.3
Risberg, B.4
Gatenholm, P.5
-
54
-
-
84879827760
-
Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves
-
[54] Kowalska-Ludwicka, K., Cala, J., Grobelski, B., Sygut, D., Jesionek-Kupnicka, D., Kolodziejczyk, M., et al. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch. Med. Sci. 9:3 (2013), 527–534.
-
(2013)
Arch. Med. Sci.
, vol.9
, Issue.3
, pp. 527-534
-
-
Kowalska-Ludwicka, K.1
Cala, J.2
Grobelski, B.3
Sygut, D.4
Jesionek-Kupnicka, D.5
Kolodziejczyk, M.6
-
55
-
-
84886290664
-
Utilization of bacterial cellulose in food
-
[55] Shi, Z., Zhang, Y., Phillips, G.O., Yang, G., Utilization of bacterial cellulose in food. Food Hydrocolloid 35 (2014), 539–545.
-
(2014)
Food Hydrocolloid
, vol.35
, pp. 539-545
-
-
Shi, Z.1
Zhang, Y.2
Phillips, G.O.3
Yang, G.4
-
56
-
-
0035869827
-
Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties
-
[56] Kuo, C.K., Ma, P.X., Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:6 (2001), 511–521.
-
(2001)
Biomaterials
, vol.22
, Issue.6
, pp. 511-521
-
-
Kuo, C.K.1
Ma, P.X.2
-
57
-
-
84894479971
-
Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties
-
[57] Sarker, B., Papageorgiou, D.G., Silva, R., Zehnder, T., Gul-E-Noor, F., Bertmer, M., et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2:11 (2014), 1470–1482.
-
(2014)
J. Mater. Chem. B
, vol.2
, Issue.11
, pp. 1470-1482
-
-
Sarker, B.1
Papageorgiou, D.G.2
Silva, R.3
Zehnder, T.4
Gul-E-Noor, F.5
Bertmer, M.6
-
58
-
-
33749990933
-
Enzyme-catalysed assembly of DNA hydrogel
-
[58] Um, S.H., Lee, J.B., Park, N., Kwon, S.Y., Umbach, C.C., Luo, D., Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5:10 (2006), 797–801.
-
(2006)
Nat. Mater.
, vol.5
, Issue.10
, pp. 797-801
-
-
Um, S.H.1
Lee, J.B.2
Park, N.3
Kwon, S.Y.4
Umbach, C.C.5
Luo, D.6
-
59
-
-
84975694684
-
Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering
-
[59] Heo, J., Koh, R.H., Shim, W., Kim, H.D., Yim, H., Hwang, N.S., Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv. Transl. Res., 2015, 1–11.
-
(2015)
Drug Deliv. Transl. Res.
, pp. 1-11
-
-
Heo, J.1
Koh, R.H.2
Shim, W.3
Kim, H.D.4
Yim, H.5
Hwang, N.S.6
-
60
-
-
84889026011
-
Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click'chemistry
-
[60] Shi, X., Qiu, L., Nie, Z., Xiao, L., Payne, G.F., Du, Y., Protein addressing on patterned microchip by coupling chitosan electrodeposition and ‘electro-click'chemistry. Biofabrication, 5(4), 2013, 41001.
-
(2013)
Biofabrication
, vol.5
, Issue.4
, pp. 41001
-
-
Shi, X.1
Qiu, L.2
Nie, Z.3
Xiao, L.4
Payne, G.F.5
Du, Y.6
-
61
-
-
84873353686
-
Electrodeposition of a biopolymeric hydrogel in track-etched micropores
-
[61] Wei, X., Payne, G.F., Shi, X., Du, Y., Electrodeposition of a biopolymeric hydrogel in track-etched micropores. Soft Mat. 9:7 (2013), 2131–2135.
-
(2013)
Soft Mat.
, vol.9
, Issue.7
, pp. 2131-2135
-
-
Wei, X.1
Payne, G.F.2
Shi, X.3
Du, Y.4
-
62
-
-
84907420331
-
Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
-
[62] Liu, Y., Yan, K., Jiang, G., Xiong, Y., Du, Y., Shi, X., Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel. Int. J. Polym. Sci., 2014, 2014.
-
(2014)
Int. J. Polym. Sci.
, vol.2014
-
-
Liu, Y.1
Yan, K.2
Jiang, G.3
Xiong, Y.4
Du, Y.5
Shi, X.6
-
63
-
-
84874070976
-
Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor
-
[63] Kim, E., Gordonov, T., Bentley, W.E., Payne, G.F., Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor. Anal. Chem. 85:4 (2013), 2102–2108.
-
(2013)
Anal. Chem.
, vol.85
, Issue.4
, pp. 2102-2108
-
-
Kim, E.1
Gordonov, T.2
Bentley, W.E.3
Payne, G.F.4
-
64
-
-
20444436289
-
Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly
-
[64] Luo, X., Xu, J., Zhang, Q., Yang, G., Chen, H., Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens. Bioelectron. 21:1 (2005), 190–196.
-
(2005)
Biosens. Bioelectron.
, vol.21
, Issue.1
, pp. 190-196
-
-
Luo, X.1
Xu, J.2
Zhang, Q.3
Yang, G.4
Chen, H.5
-
65
-
-
80052771947
-
In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking
-
[65] Moura, M.J., Faneca, H., Lima, M.P., Gil, M.H., Figueiredo, M.M., In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Biomacromolecules 12:9 (2011), 3275–3284.
-
(2011)
Biomacromolecules
, vol.12
, Issue.9
, pp. 3275-3284
-
-
Moura, M.J.1
Faneca, H.2
Lima, M.P.3
Gil, M.H.4
Figueiredo, M.M.5
-
66
-
-
0034333696
-
Novel injectable neutral solutions of chitosan form biodegradable gels in situ
-
[66] Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M.D., Hoemann, C.D., et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:21 (2000), 2155–2161.
-
(2000)
Biomaterials
, vol.21
, Issue.21
, pp. 2155-2161
-
-
Chenite, A.1
Chaput, C.2
Wang, D.3
Combes, C.4
Buschmann, M.D.5
Hoemann, C.D.6
-
67
-
-
16344371938
-
Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission
-
[67] Mi, F., Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromolecules 6:2 (2005), 975–987.
-
(2005)
Biomacromolecules
, vol.6
, Issue.2
, pp. 975-987
-
-
Mi, F.1
-
68
-
-
75149149000
-
Chitosan-based hydrogels for controlled, localized drug delivery
-
[68] Bhattarai, N., Gunn, J., Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62:1 (2010), 83–99.
-
(2010)
Adv. Drug Deliv. Rev.
, vol.62
, Issue.1
, pp. 83-99
-
-
Bhattarai, N.1
Gunn, J.2
Zhang, M.3
-
69
-
-
0034142515
-
Photocrosslinkable chitosan as a biological adhesive
-
[69] Ono, K., Saito, Y., Yura, H., Ishikawa, K., Kurita, A., Akaike, T., et al. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res. 49:2 (2000), 289–295.
-
(2000)
J. Biomed. Mater. Res.
, vol.49
, Issue.2
, pp. 289-295
-
-
Ono, K.1
Saito, Y.2
Yura, H.3
Ishikawa, K.4
Kurita, A.5
Akaike, T.6
-
70
-
-
34247563295
-
Photocrosslinkable hydrogel for myocyte cell culture and injection
-
[70] Yeo, Y., Geng, W., Ito, T., Kohane, D.S., Burdick, J.A., Radisic, M., Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. B Appl. Biomaterials 81:2 (2007), 312–322.
-
(2007)
J. Biomed. Mater. Res. B Appl. Biomaterials
, vol.81
, Issue.2
, pp. 312-322
-
-
Yeo, Y.1
Geng, W.2
Ito, T.3
Kohane, D.S.4
Burdick, J.A.5
Radisic, M.6
-
71
-
-
0037290598
-
Influence of different crosslinking treatments on the physical properties of collagen membranes
-
[71] Charulatha, V., Rajaram, A., Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 24:5 (2003), 759–767.
-
(2003)
Biomaterials
, vol.24
, Issue.5
, pp. 759-767
-
-
Charulatha, V.1
Rajaram, A.2
-
72
-
-
0018841015
-
Design of an artificial skin. I. Basic design principles
-
[72] Yannas, I.V., Burke, J.F., Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14:1 (1980), 65–81.
-
(1980)
J. Biomed. Mater. Res.
, vol.14
, Issue.1
, pp. 65-81
-
-
Yannas, I.V.1
Burke, J.F.2
-
73
-
-
10744232100
-
Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices
-
[73] Angele, P., Abke, J., Kujat, R., Faltermeier, H., Schumann, D., Nerlich, M., et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25:14 (2004), 2831–2841.
-
(2004)
Biomaterials
, vol.25
, Issue.14
, pp. 2831-2841
-
-
Angele, P.1
Abke, J.2
Kujat, R.3
Faltermeier, H.4
Schumann, D.5
Nerlich, M.6
-
74
-
-
78649270937
-
Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications
-
[74] Yan, L.P., Wang, Y.J., Ren, L., Wu, G., Caridade, S.G., Fan, J.B., et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. A 95:2 (2010), 465–475.
-
(2010)
J. Biomed. Mater. Res. A
, vol.95
, Issue.2
, pp. 465-475
-
-
Yan, L.P.1
Wang, Y.J.2
Ren, L.3
Wu, G.4
Caridade, S.G.5
Fan, J.B.6
-
75
-
-
22544438722
-
The cellular response to transglutaminase-cross-linked collagen
-
[75] Chau, D.Y., Collighan, R.J., Verderio, E.A., Addy, V.L., Griffin, M., The cellular response to transglutaminase-cross-linked collagen. Biomaterials 26:33 (2005), 6518–6529.
-
(2005)
Biomaterials
, vol.26
, Issue.33
, pp. 6518-6529
-
-
Chau, D.Y.1
Collighan, R.J.2
Verderio, E.A.3
Addy, V.L.4
Griffin, M.5
-
76
-
-
79956139223
-
Cross-linking of collagen with laccases and tyrosinases
-
[76] Jus, S., Stachel, I., Schloegl, W., Pretzler, M., Friess, W., Meyer, M., et al. Cross-linking of collagen with laccases and tyrosinases. Mater. Sci. Eng. C 31:5 (2011), 1068–1077.
-
(2011)
Mater. Sci. Eng. C
, vol.31
, Issue.5
, pp. 1068-1077
-
-
Jus, S.1
Stachel, I.2
Schloegl, W.3
Pretzler, M.4
Friess, W.5
Meyer, M.6
-
77
-
-
0030250457
-
Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts
-
[77] Mizuno, S., Glowacki, J., Three-dimensional composite of demineralized bone powder and collagen for in vitro analysis of chondroinduction of human dermal fibroblasts. Biomaterials 17:18 (1996), 1819–1825.
-
(1996)
Biomaterials
, vol.17
, Issue.18
, pp. 1819-1825
-
-
Mizuno, S.1
Glowacki, J.2
-
78
-
-
77954568814
-
DNA gel particles
-
[78] Morán, M.C., Miguel, M.G., Lindman, B., DNA gel particles. Soft Mat. 6:14 (2010), 3143–3156.
-
(2010)
Soft Mat.
, vol.6
, Issue.14
, pp. 3143-3156
-
-
Morán, M.C.1
Miguel, M.G.2
Lindman, B.3
-
79
-
-
58849155933
-
Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release
-
[79] Tang, H., Duan, X., Feng, X., Liu, L., Wang, S., Li, Y., et al. Fluorescent DNA–poly (phenylenevinylene) hybrid hydrogels for monitoring drug release. Chem. Commun.(6), 2009, 641–643.
-
(2009)
Chem. Commun.
, Issue.6
, pp. 641-643
-
-
Tang, H.1
Duan, X.2
Feng, X.3
Liu, L.4
Wang, S.5
Li, Y.6
-
80
-
-
84897831046
-
Reversible Ag+-crosslinked DNA hydrogels
-
[80] Guo, W., Qi, X., Orbach, R., Lu, C., Freage, L., Mironi-Harpaz, I., et al. Reversible Ag+-crosslinked DNA hydrogels. Chem. Commun. 50:31 (2014), 4065–4068.
-
(2014)
Chem. Commun.
, vol.50
, Issue.31
, pp. 4065-4068
-
-
Guo, W.1
Qi, X.2
Orbach, R.3
Lu, C.4
Freage, L.5
Mironi-Harpaz, I.6
-
81
-
-
78149420766
-
A pH-triggered, fast-responding DNA hydrogel
-
[81] Cheng, E., Xing, Y., Chen, P., Yang, Y., Sun, Y., Zhou, D., et al. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. 121:41 (2009), 7796–7799.
-
(2009)
Angew. Chem.
, vol.121
, Issue.41
, pp. 7796-7799
-
-
Cheng, E.1
Xing, Y.2
Chen, P.3
Yang, Y.4
Sun, Y.5
Zhou, D.6
-
82
-
-
84874593612
-
A mechanical metamaterial made from a DNA hydrogel
-
[82] Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., et al. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7:12 (2012), 816–820.
-
(2012)
Nat. Nanotechnol.
, vol.7
, Issue.12
, pp. 816-820
-
-
Lee, J.B.1
Peng, S.2
Yang, D.3
Roh, Y.H.4
Funabashi, H.5
Park, N.6
-
83
-
-
79952121671
-
Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness
-
[83] Xing, Y., Cheng, E., Yang, Y., Chen, P., Zhang, T., Sun, Y., et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater. 23:9 (2011), 1117–1121.
-
(2011)
Adv. Mater.
, vol.23
, Issue.9
, pp. 1117-1121
-
-
Xing, Y.1
Cheng, E.2
Yang, Y.3
Chen, P.4
Zhang, T.5
Sun, Y.6
-
84
-
-
84924020223
-
A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites
-
[84] Li, C., Chen, P., Shao, Y., Zhou, X., Wu, Y., Yang, Z., et al. A writable polypeptide–DNA hydrogel with rationally designed multi-modification sites. Small 11:9–10 (2015), 1138–1143.
-
(2015)
Small
, vol.11
, Issue.9-10
, pp. 1138-1143
-
-
Li, C.1
Chen, P.2
Shao, Y.3
Zhou, X.4
Wu, Y.5
Yang, Z.6
-
85
-
-
84908689181
-
Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins
-
[85] Wu, Y., Li, C., Boldt, F., Wang, Y., Kuan, S.L., Tran, T.T., et al. Programmable protein–DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem. Commun. 50:93 (2014), 14620–14622.
-
(2014)
Chem. Commun.
, vol.50
, Issue.93
, pp. 14620-14622
-
-
Wu, Y.1
Li, C.2
Boldt, F.3
Wang, Y.4
Kuan, S.L.5
Tran, T.T.6
-
86
-
-
84923169710
-
Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting
-
[86] Li, C., Faulkner Jones, A., Dun, A.R., Jin, J., Chen, P., Xing, Y., et al. Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. 54:13 (2015), 3957–3961.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, Issue.13
, pp. 3957-3961
-
-
Li, C.1
Faulkner Jones, A.2
Dun, A.R.3
Jin, J.4
Chen, P.5
Xing, Y.6
-
87
-
-
84908402734
-
Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel
-
[87] Hur, J., Im, K., Kim, S.W., Kim, J., Chung, D., Kim, T., et al. Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8:10 (2014), 10066–10076.
-
(2014)
ACS Nano
, vol.8
, Issue.10
, pp. 10066-10076
-
-
Hur, J.1
Im, K.2
Kim, S.W.3
Kim, J.4
Chung, D.5
Kim, T.6
-
88
-
-
84907506854
-
pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery
-
[88] Shi, X., Zheng, Y., Wang, G., Lin, Q., Fan, J., pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 4:87 (2014), 47056–47065.
-
(2014)
RSC Adv.
, vol.4
, Issue.87
, pp. 47056-47065
-
-
Shi, X.1
Zheng, Y.2
Wang, G.3
Lin, Q.4
Fan, J.5
-
89
-
-
0033996746
-
Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications
-
[89] Collier, J.H., Camp, J.P., Hudson, T.W., Schmidt, C.E., Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50:4 (2000), 574–584.
-
(2000)
J. Biomed. Mater. Res.
, vol.50
, Issue.4
, pp. 574-584
-
-
Collier, J.H.1
Camp, J.P.2
Hudson, T.W.3
Schmidt, C.E.4
-
90
-
-
55049106151
-
Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells
-
[90] Hu, J., Huang, L., Zhuang, X., Zhang, P., Lang, L., Chen, X., et al. Electroactive aniline pentamer cross-linking chitosan for stimulation growth of electrically sensitive cells. Biomacromolecules 9:10 (2008), 2637–2644.
-
(2008)
Biomacromolecules
, vol.9
, Issue.10
, pp. 2637-2644
-
-
Hu, J.1
Huang, L.2
Zhuang, X.3
Zhang, P.4
Lang, L.5
Chen, X.6
-
91
-
-
84903989508
-
Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels
-
[91] Zhang, L., Li, Y., Li, L., Guo, B., Ma, P.X., Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. React. Funct. Polym. 82 (2014), 81–88.
-
(2014)
React. Funct. Polym.
, vol.82
, pp. 81-88
-
-
Zhang, L.1
Li, Y.2
Li, L.3
Guo, B.4
Ma, P.X.5
-
92
-
-
84918802452
-
Processable conducting graphene/chitosan hydrogels for tissue engineering
-
[92] Sayyar, S., Murray, E., Thompson, B.C., Chung, J., Officer, D.L., Gambhir, S., et al. Processable conducting graphene/chitosan hydrogels for tissue engineering. J. Mater. Chem. B 3:3 (2015), 481–490.
-
(2015)
J. Mater. Chem. B
, vol.3
, Issue.3
, pp. 481-490
-
-
Sayyar, S.1
Murray, E.2
Thompson, B.C.3
Chung, J.4
Officer, D.L.5
Gambhir, S.6
-
93
-
-
84879608427
-
Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering
-
[93] Abidian, M.R., Daneshvar, E.D., Egeland, B.M., Kipke, D.R., Cederna, P.S., Urbanchek, M.G., Hybrid conducting polymer–hydrogel conduits for axonal growth and neural tissue engineering. Adv. Healthc. Mater. 1:6 (2012), 762–767.
-
(2012)
Adv. Healthc. Mater.
, vol.1
, Issue.6
, pp. 762-767
-
-
Abidian, M.R.1
Daneshvar, E.D.2
Egeland, B.M.3
Kipke, D.R.4
Cederna, P.S.5
Urbanchek, M.G.6
-
94
-
-
84875669562
-
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
-
[94] Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S.B., et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:3 (2013), 2369–2380.
-
(2013)
ACS Nano
, vol.7
, Issue.3
, pp. 2369-2380
-
-
Shin, S.R.1
Jung, S.M.2
Zalabany, M.3
Kim, K.4
Zorlutuna, P.5
Kim, S.B.6
-
95
-
-
38949203389
-
Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization
-
[95] Ismail, Y.A., Shin, S.R., Shin, K.M., Yoon, S.G., Shon, K., Kim, S.I., et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization. Sens. Actuat. B Chem. 129:2 (2008), 834–840.
-
(2008)
Sens. Actuat. B Chem.
, vol.129
, Issue.2
, pp. 834-840
-
-
Ismail, Y.A.1
Shin, S.R.2
Shin, K.M.3
Yoon, S.G.4
Shon, K.5
Kim, S.I.6
-
96
-
-
0036872919
-
Electroactive polymers as artificial muscles: a review
-
[96] Bar-Cohen, Y., Electroactive polymers as artificial muscles: a review. J. Spacecr. Rockets 39:6 (2002), 822–827.
-
(2002)
J. Spacecr. Rockets
, vol.39
, Issue.6
, pp. 822-827
-
-
Bar-Cohen, Y.1
-
97
-
-
84880886247
-
Nanocellulose electroconductive composites
-
2013-01-01
-
[97] Shi, Z., Phillips, G.O., Yang, G., Nanocellulose electroconductive composites. Nanoscale 5:8 (2013), 3194–3201 2013-01-01.
-
(2013)
Nanoscale
, vol.5
, Issue.8
, pp. 3194-3201
-
-
Shi, Z.1
Phillips, G.O.2
Yang, G.3
-
98
-
-
84859179159
-
In situ nano-assembly of bacterial cellulose–polyaniline composites
-
[98] Shi, Z., Zang, S., Jiang, F., Huang, L., Lu, D., Ma, Y., et al. In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv. 2:3 (2012), 1040–1046.
-
(2012)
RSC Adv.
, vol.2
, Issue.3
, pp. 1040-1046
-
-
Shi, Z.1
Zang, S.2
Jiang, F.3
Huang, L.4
Lu, D.5
Ma, Y.6
-
99
-
-
84890843124
-
Double network bacterial cellulose hydrogel to build a biology–device interface
-
[99] Shi, Z., Li, Y., Chen, X., Han, H., Yang, G., Double network bacterial cellulose hydrogel to build a biology–device interface. Nanoscale 6:2 (2014), 970–977.
-
(2014)
Nanoscale
, vol.6
, Issue.2
, pp. 970-977
-
-
Shi, Z.1
Li, Y.2
Chen, X.3
Han, H.4
Yang, G.5
-
100
-
-
64849110845
-
In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes
-
[100] Hu, W., Chen, S., Li, X., Shi, S., Shen, W., Zhang, X., et al. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater. Sci. Eng. C 29:4 (2009), 1216–1219.
-
(2009)
Mater. Sci. Eng. C
, vol.29
, Issue.4
, pp. 1216-1219
-
-
Hu, W.1
Chen, S.2
Li, X.3
Shi, S.4
Shen, W.5
Zhang, X.6
-
101
-
-
38149065174
-
Biomaterials for tissue engineering
-
[101] Eisenbarth, E., Biomaterials for tissue engineering. Adv. Eng. Mater. 9:12 (2007), 1051–1060.
-
(2007)
Adv. Eng. Mater.
, vol.9
, Issue.12
, pp. 1051-1060
-
-
Eisenbarth, E.1
-
102
-
-
84901014167
-
Ordered manufactured bacterial cellulose as biomaterial of tissue engineering
-
[102] Zang, S., Sun, Z., Liu, K., Wang, G., Zhang, R., Liu, B., et al. Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Mater. Lett. 128 (2014), 314–318.
-
(2014)
Mater. Lett.
, vol.128
, pp. 314-318
-
-
Zang, S.1
Sun, Z.2
Liu, K.3
Wang, G.4
Zhang, R.5
Liu, B.6
-
103
-
-
40849127369
-
Production of bacterial cellulose with well oriented fibril on PDMS substrate
-
[103] Putra, A., Kakugo, A., Furukawa, H., Gong, J.P., Osada, Y., Uemura, T., et al. Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym. J. 40:2 (2008), 137–142.
-
(2008)
Polym. J.
, vol.40
, Issue.2
, pp. 137-142
-
-
Putra, A.1
Kakugo, A.2
Furukawa, H.3
Gong, J.P.4
Osada, Y.5
Uemura, T.6
-
104
-
-
33947704741
-
Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus
-
[104] Uraki, Y., Nemoto, J., Otsuka, H., Tamai, Y., Sugiyama, J., Kishimoto, T., et al. Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus. Carbohyd. Polym. 69:1 (2007), 1–6.
-
(2007)
Carbohyd. Polym.
, vol.69
, Issue.1
, pp. 1-6
-
-
Uraki, Y.1
Nemoto, J.2
Otsuka, H.3
Tamai, Y.4
Sugiyama, J.5
Kishimoto, T.6
-
105
-
-
77955140781
-
Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers
-
[105] Sano, M.B., Rojas, A.D., Gatenholm, P., Davalos, R.V., Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann. Biomed. Eng. 38:8 (2010), 2475–2484.
-
(2010)
Ann. Biomed. Eng.
, vol.38
, Issue.8
, pp. 2475-2484
-
-
Sano, M.B.1
Rojas, A.D.2
Gatenholm, P.3
Davalos, R.V.4
-
106
-
-
77957117629
-
Conducting polymer electrodes printed on hydrogel
-
[106] Sekine, S., Ido, Y., Miyake, T., Nagamine, K., Nishizawa, M., Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 132:38 (2010), 13174–13175.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.38
, pp. 13174-13175
-
-
Sekine, S.1
Ido, Y.2
Miyake, T.3
Nagamine, K.4
Nishizawa, M.5
-
107
-
-
84926506238
-
Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications
-
[107] Khan, S., Ul-Islam, M., Khattak, W.A., Ullah, M.W., Park, J.K., Bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites for optoelectronic applications. Carbohyd. Polym. 127 (2015), 86–93.
-
(2015)
Carbohyd. Polym.
, vol.127
, pp. 86-93
-
-
Khan, S.1
Ul-Islam, M.2
Khattak, W.A.3
Ullah, M.W.4
Park, J.K.5
-
108
-
-
84937974114
-
Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications
-
[108] Khan, S., Ul-Islam, M., Ullah, M.W., Kim, Y., Park, J.K., Synthesis and characterization of a novel bacterial cellulose–poly (3, 4-ethylenedioxythiophene)–poly (styrene sulfonate) composite for use in biomedical applications. Cellulose 22:4 (2015), 2141–2148.
-
(2015)
Cellulose
, vol.22
, Issue.4
, pp. 2141-2148
-
-
Khan, S.1
Ul-Islam, M.2
Ullah, M.W.3
Kim, Y.4
Park, J.K.5
-
109
-
-
37449020775
-
Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size
-
[109] Kim, J., Kim, K.H., Kim, K.B., Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J. Power Sources 176:1 (2008), 396–402.
-
(2008)
J. Power Sources
, vol.176
, Issue.1
, pp. 396-402
-
-
Kim, J.1
Kim, K.H.2
Kim, K.B.3
-
110
-
-
76949084001
-
Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel
-
[110] Lee, S.H., Lee, C.K., Shin, S.R., Gu, B.K., Kim, S.I., Kang, T.M., et al. Enhanced actuation of PPy/CNT hybrid fibers using porous structured DNA hydrogel. Sens. Actuat. B Chem. 145:1 (2010), 89–92.
-
(2010)
Sens. Actuat. B Chem.
, vol.145
, Issue.1
, pp. 89-92
-
-
Lee, S.H.1
Lee, C.K.2
Shin, S.R.3
Gu, B.K.4
Kim, S.I.5
Kang, T.M.6
-
111
-
-
79952198167
-
Scaffolds for tissue engineering and 3D cell culture
-
[111] Carletti, E., Motta, A., Migliaresi, C., Scaffolds for tissue engineering and 3D cell culture. 3D Cell Cult. Methods Protoc., 2011, 17–39.
-
(2011)
3D Cell Cult. Methods Protoc.
, pp. 17-39
-
-
Carletti, E.1
Motta, A.2
Migliaresi, C.3
-
112
-
-
56049090565
-
Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions
-
[112] Harley, B.A., Kim, H., Zaman, M.H., Yannas, I.V., Lauffenburger, D.A., Gibson, L.J., Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95:8 (2008), 4013–4024.
-
(2008)
Biophys. J.
, vol.95
, Issue.8
, pp. 4013-4024
-
-
Harley, B.A.1
Kim, H.2
Zaman, M.H.3
Yannas, I.V.4
Lauffenburger, D.A.5
Gibson, L.J.6
-
113
-
-
62149106670
-
Cell proliferation and migration in silk fibroin 3D scaffolds
-
[113] Mandal, B.B., Kundu, S.C., Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30:15 (2009), 2956–2965.
-
(2009)
Biomaterials
, vol.30
, Issue.15
, pp. 2956-2965
-
-
Mandal, B.B.1
Kundu, S.C.2
-
114
-
-
77954385915
-
Directed 3D cell alignment and elongation in microengineered hydrogels
-
[114] Aubin, H., Nichol, J.W., Hutson, C.B., Bae, H., Sieminski, A.L., Cropek, D.M., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:27 (2010), 6941–6951.
-
(2010)
Biomaterials
, vol.31
, Issue.27
, pp. 6941-6951
-
-
Aubin, H.1
Nichol, J.W.2
Hutson, C.B.3
Bae, H.4
Sieminski, A.L.5
Cropek, D.M.6
-
115
-
-
33644521568
-
A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo
-
[115] Ford, M.C., Bertram, J.P., Hynes, S.R., Michaud, M., Li, Q., Young, M., et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks invivo. Proc. Natl. Acad. Sci. U. S. A. 103:8 (2006), 2512–2517.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, Issue.8
, pp. 2512-2517
-
-
Ford, M.C.1
Bertram, J.P.2
Hynes, S.R.3
Michaud, M.4
Li, Q.5
Young, M.6
-
116
-
-
17844400927
-
Porosity of 3D biomaterial scaffolds and osteogenesis
-
[116] Karageorgiou, V., Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:27 (2005), 5474–5491.
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5474-5491
-
-
Karageorgiou, V.1
Kaplan, D.2
-
117
-
-
84888638734
-
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
-
[117] Shin, S.R., Aghaei Ghareh Bolagh, B., Dang, T.T., Topkaya, S.N., Gao, X., Yang, S.Y., et al. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 25:44 (2013), 6385–6391.
-
(2013)
Adv. Mater.
, vol.25
, Issue.44
, pp. 6385-6391
-
-
Shin, S.R.1
Aghaei Ghareh Bolagh, B.2
Dang, T.T.3
Topkaya, S.N.4
Gao, X.5
Yang, S.Y.6
-
118
-
-
84856202952
-
Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
-
[118] Shin, S.R., Bae, H., Cha, J.M., Mun, J.Y., Chen, Y., Tekin, H., et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6:1 (2011), 362–372.
-
(2011)
ACS Nano
, vol.6
, Issue.1
, pp. 362-372
-
-
Shin, S.R.1
Bae, H.2
Cha, J.M.3
Mun, J.Y.4
Chen, Y.5
Tekin, H.6
-
119
-
-
84881131666
-
Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers
-
[119] Ramón Azcón, J., Ahadian, S., Estili, M., Liang, X., Ostrovidov, S., Kaji, H., et al. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv. Mater. 25:29 (2013), 4028–4034.
-
(2013)
Adv. Mater.
, vol.25
, Issue.29
, pp. 4028-4034
-
-
Ramón Azcón, J.1
Ahadian, S.2
Estili, M.3
Liang, X.4
Ostrovidov, S.5
Kaji, H.6
-
120
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
[120] Drury, J.L., Mooney, D.J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:24 (2003), 4337–4351.
-
(2003)
Biomaterials
, vol.24
, Issue.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
121
-
-
0003972422
-
Cell Biology of Extracellular Matrix
-
Springer Science & Business Media
-
[121] Hay, E.D., Cell Biology of Extracellular Matrix. 2013, Springer Science & Business Media.
-
(2013)
-
-
Hay, E.D.1
-
122
-
-
0035385135
-
Hydrogels for tissue engineering
-
[122] Lee, K.Y., Mooney, D.J., Hydrogels for tissue engineering. Chem. Rev. 101:7 (2001), 1869–1880.
-
(2001)
Chem. Rev.
, vol.101
, Issue.7
, pp. 1869-1880
-
-
Lee, K.Y.1
Mooney, D.J.2
-
123
-
-
77952828425
-
Biodegradable cellulose-based hydrogels: design and applications
-
[123] Sannino, A., Demitri, C., Madaghiele, M., Biodegradable cellulose-based hydrogels: design and applications. Materials 2:2 (2009), 353–373.
-
(2009)
Materials
, vol.2
, Issue.2
, pp. 353-373
-
-
Sannino, A.1
Demitri, C.2
Madaghiele, M.3
-
124
-
-
83955165268
-
Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging
-
[124] De Moura, M.R., Mattoso, L.H., Zucolotto, V., Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng. 109:3 (2012), 520–524.
-
(2012)
J. Food Eng.
, vol.109
, Issue.3
, pp. 520-524
-
-
De Moura, M.R.1
Mattoso, L.H.2
Zucolotto, V.3
-
125
-
-
80052796502
-
A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering
-
[125] Yow, S., Lim, T.H., Yim, E.K., Lim, C.T., Leong, K.W., A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering. Polym. Basel 3:1 (2011), 527–544.
-
(2011)
Polym. Basel
, vol.3
, Issue.1
, pp. 527-544
-
-
Yow, S.1
Lim, T.H.2
Yim, E.K.3
Lim, C.T.4
Leong, K.W.5
-
126
-
-
84908406998
-
Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart
-
[126] Pok, S., Vitale, F., Eichmann, S.L., Benavides, O.M., Pasquali, M., Jacot, J.G., Biocompatible carbon nanotube–chitosan scaffold matching the electrical conductivity of the heart. ACS Nano 8:10 (2014), 9822–9832.
-
(2014)
ACS Nano
, vol.8
, Issue.10
, pp. 9822-9832
-
-
Pok, S.1
Vitale, F.2
Eichmann, S.L.3
Benavides, O.M.4
Pasquali, M.5
Jacot, J.G.6
-
127
-
-
84904734303
-
Flexible supercapacitors based on bacterial cellulose paper electrodes
-
[127] Li, S., Huang, D., Zhang, B., Xu, X., Wang, M., Yang, G., et al. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater., 4(10), 2014.
-
(2014)
Adv. Energy Mater.
, vol.4
, Issue.10
-
-
Li, S.1
Huang, D.2
Zhang, B.3
Xu, X.4
Wang, M.5
Yang, G.6
-
128
-
-
84930631521
-
Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery
-
2015-05-26
-
[128] Merino, S., Martín, C., Kostarelos, K., Prato, M., Vázquez, E., Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 9:5 (2015), 4686–4697 2015-05-26.
-
(2015)
ACS Nano
, vol.9
, Issue.5
, pp. 4686-4697
-
-
Merino, S.1
Martín, C.2
Kostarelos, K.3
Prato, M.4
Vázquez, E.5
-
129
-
-
84876516474
-
Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level
-
[129] Schulte, F.A., Ruffoni, D., Lambers, F.M., Christen, D., Webster, D.J., Kuhn, G., et al. Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PloS One, 8(4), 2013, e62172.
-
(2013)
PloS One
, vol.8
, Issue.4
, pp. e62172
-
-
Schulte, F.A.1
Ruffoni, D.2
Lambers, F.M.3
Christen, D.4
Webster, D.J.5
Kuhn, G.6
-
130
-
-
84871487509
-
The guidance of stem cell differentiation by substrate alignment and mechanical stimulation
-
[130] Subramony, S.D., Dargis, B.R., Castillo, M., Azeloglu, E.U., Tracey, M.S., Su, A., et al. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34:8 (2013), 1942–1953.
-
(2013)
Biomaterials
, vol.34
, Issue.8
, pp. 1942-1953
-
-
Subramony, S.D.1
Dargis, B.R.2
Castillo, M.3
Azeloglu, E.U.4
Tracey, M.S.5
Su, A.6
-
131
-
-
84857432905
-
Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing
-
2012-02-22
-
[131] Sehaqui, H., Ezekiel Mushi, N., Morimune, S., Salajkova, M., Nishino, T., Berglund, L.A., Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Inter. 4:2 (2012), 1043–1049 2012-02-22.
-
(2012)
ACS Appl. Mater. Inter.
, vol.4
, Issue.2
, pp. 1043-1049
-
-
Sehaqui, H.1
Ezekiel Mushi, N.2
Morimune, S.3
Salajkova, M.4
Nishino, T.5
Berglund, L.A.6
-
132
-
-
51549087103
-
Modeling elastic, viscous and creep characteristics of cellulose electro-active paper
-
[132] Kim, J., Ampofo, J., Craft, W., Kim, H.S., Modeling elastic, viscous and creep characteristics of cellulose electro-active paper. Mech. Mater. 40:12 (2008), 1001–1011.
-
(2008)
Mech. Mater.
, vol.40
, Issue.12
, pp. 1001-1011
-
-
Kim, J.1
Ampofo, J.2
Craft, W.3
Kim, H.S.4
-
133
-
-
77956461210
-
Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels
-
Wiley Online Library
-
[133] Frensemeier, M., Koplin, C., Jaeger, R., Kramer, F., Klemm, D., Mechanical Properties of Bacterially Synthesized Nanocellulose Hydrogels. Macromolecular Symposia, vol. 2010, 2010, Wiley Online Library, 38–44.
-
(2010)
Macromolecular Symposia
, vol.2010
, pp. 38-44
-
-
Frensemeier, M.1
Koplin, C.2
Jaeger, R.3
Kramer, F.4
Klemm, D.5
-
134
-
-
84902133458
-
Micromechanics and poroelasticity of hydrated cellulose networks
-
[134] Lopez-Sanchez, P., Rincon, M., Wang, D., Brulhart, S., Stokes, J.R., Gidley, M.J., Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15:6 (2014), 2274–2284.
-
(2014)
Biomacromolecules
, vol.15
, Issue.6
, pp. 2274-2284
-
-
Lopez-Sanchez, P.1
Rincon, M.2
Wang, D.3
Brulhart, S.4
Stokes, J.R.5
Gidley, M.J.6
-
135
-
-
84940403921
-
Time-dependent rheological behaviour of bacterial cellulose hydrogel
-
[135] Gao, X., Shi, Z., Kuśmierczyk, P., Liu, C., Yang, G., Sevostianov, I., et al. Time-dependent rheological behaviour of bacterial cellulose hydrogel. Mater. Sci. Eng. C 58 (2016), 153–159.
-
(2016)
Mater. Sci. Eng. C
, vol.58
, pp. 153-159
-
-
Gao, X.1
Shi, Z.2
Kuśmierczyk, P.3
Liu, C.4
Yang, G.5
Sevostianov, I.6
-
136
-
-
84952690578
-
Through-thickness stress relaxation in bacterial cellulose hydrogel
-
[136] Gao, X., Kuśmierczyk, P., Shi, Z., Liu, C., Yang, G., Sevostianov, I., et al. Through-thickness stress relaxation in bacterial cellulose hydrogel. J. Mech. Behav. Biomed. 59 (2016), 90–98.
-
(2016)
J. Mech. Behav. Biomed.
, vol.59
, pp. 90-98
-
-
Gao, X.1
Kuśmierczyk, P.2
Shi, Z.3
Liu, C.4
Yang, G.5
Sevostianov, I.6
-
137
-
-
84960517088
-
Connection between elastic and electrical properties of cortical bone
-
[137] Gao, X., Sevostianov, I., Connection between elastic and electrical properties of cortical bone. J. Biomech. 49:5 (2016), 765–772.
-
(2016)
J. Biomech.
, vol.49
, Issue.5
, pp. 765-772
-
-
Gao, X.1
Sevostianov, I.2
-
138
-
-
33847202963
-
Biomaterials approach to expand and direct differentiation of stem cells
-
2007-01-30
-
[138] Chai, C., Leong, K.W., Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15:3 (2007), 467–480 2007-01-30.
-
(2007)
Mol. Ther.
, vol.15
, Issue.3
, pp. 467-480
-
-
Chai, C.1
Leong, K.W.2
-
139
-
-
19644367664
-
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
-
2005-01-01
-
[139] Lutolf, M.P., Hubbell, J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:1 (2005), 47–55 2005-01-01.
-
(2005)
Nat. Biotechnol.
, vol.23
, Issue.1
, pp. 47-55
-
-
Lutolf, M.P.1
Hubbell, J.A.2
-
140
-
-
53849094748
-
Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels
-
[140] MacDonald, R.A., Voge, C.M., Kariolis, M., Stegemann, J.P., Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomater. 4:6 (2008), 1583–1592.
-
(2008)
Acta Biomater.
, vol.4
, Issue.6
, pp. 1583-1592
-
-
MacDonald, R.A.1
Voge, C.M.2
Kariolis, M.3
Stegemann, J.P.4
-
141
-
-
9744241649
-
Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer
-
[141] Cen, L., Neoh, K.G., Li, Y., Kang, E.T., Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. Biomacromolecules 5:6 (2004), 2238–2246.
-
(2004)
Biomacromolecules
, vol.5
, Issue.6
, pp. 2238-2246
-
-
Cen, L.1
Neoh, K.G.2
Li, Y.3
Kang, E.T.4
-
142
-
-
84885993362
-
Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering
-
[142] Sajesh, K.M., Jayakumar, R., Nair, S.V., Chennazhi, K.P., Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 62 (2013), 465–471.
-
(2013)
Int. J. Biol. Macromol.
, vol.62
, pp. 465-471
-
-
Sajesh, K.M.1
Jayakumar, R.2
Nair, S.V.3
Chennazhi, K.P.4
-
143
-
-
84896336871
-
Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide
-
2014-03-12
-
[143] Liu, H., Cheng, J., Chen, F., Hou, F., Bai, D., Xi, P., et al. Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl. Mater. Inter. 6:5 (2014), 3132–3140 2014-03-12.
-
(2014)
ACS Appl. Mater. Inter.
, vol.6
, Issue.5
, pp. 3132-3140
-
-
Liu, H.1
Cheng, J.2
Chen, F.3
Hou, F.4
Bai, D.5
Xi, P.6
-
144
-
-
84900846421
-
In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration
-
[144] Shi, Z., Gao, H., Feng, J., Ding, B., Cao, X., Kuga, S., et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. Ed. 53:21 (2014), 5380–5384.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, Issue.21
, pp. 5380-5384
-
-
Shi, Z.1
Gao, H.2
Feng, J.3
Ding, B.4
Cao, X.5
Kuga, S.6
-
145
-
-
84896743805
-
Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering
-
[145] Martins, A.M., Eng, G., Caridade, S.G., Mano, J.F., Reis, R.L., Vunjak-Novakovic, G., Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15:2 (2014), 635–643.
-
(2014)
Biomacromolecules
, vol.15
, Issue.2
, pp. 635-643
-
-
Martins, A.M.1
Eng, G.2
Caridade, S.G.3
Mano, J.F.4
Reis, R.L.5
Vunjak-Novakovic, G.6
-
146
-
-
75149179016
-
Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity
-
[146] Xiao, Y., Li, C.M., Wang, S., Shi, J., Ooi, C.P., Incorporation of collagen in poly (3, 4-ethylenedioxythiophene) for a bifunctional film with high bio-and electrochemical activity. J. Biomed. Mater. Res. A 92:2 (2010), 766–772.
-
(2010)
J. Biomed. Mater. Res. A
, vol.92
, Issue.2
, pp. 766-772
-
-
Xiao, Y.1
Li, C.M.2
Wang, S.3
Shi, J.4
Ooi, C.P.5
-
147
-
-
84890954529
-
Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration
-
[147] Sirivisoot, S., Pareta, R., Harrison, B.S., Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration. Interface Focus, 4(1), 2014, 20130050.
-
(2014)
Interface Focus
, vol.4
, Issue.1
, pp. 20130050
-
-
Sirivisoot, S.1
Pareta, R.2
Harrison, B.S.3
-
148
-
-
44849096384
-
Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment
-
[148] Voge, C.M., Kariolis, M., MacDonald, R.A., Stegemann, J.P., Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment. J. Biomed. Mater. Res. A 86:1 (2008), 269–277.
-
(2008)
J. Biomed. Mater. Res. A
, vol.86
, Issue.1
, pp. 269-277
-
-
Voge, C.M.1
Kariolis, M.2
MacDonald, R.A.3
Stegemann, J.P.4
-
149
-
-
84883218399
-
Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth
-
[149] Cho, Y., Borgens, R.B., Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. J. Mater. Chem. B 1:33 (2013), 4166–4170.
-
(2013)
J. Mater. Chem. B
, vol.1
, Issue.33
, pp. 4166-4170
-
-
Cho, Y.1
Borgens, R.B.2
-
150
-
-
84897825773
-
In situ forming biodegradable electroactive hydrogels
-
[150] Li, L., Ge, J., Guo, B., Ma, P.X., In situ forming biodegradable electroactive hydrogels. Polym. Chem-UK 5:8 (2014), 2880–2890.
-
(2014)
Polym. Chem-UK
, vol.5
, Issue.8
, pp. 2880-2890
-
-
Li, L.1
Ge, J.2
Guo, B.3
Ma, P.X.4
-
151
-
-
84863034486
-
Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
-
[151] Liu, Y., Hu, J., Zhuang, X., Zhang, P., Wei, Y., Wang, X., et al. Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol. Biosci. 12:2 (2012), 241–250.
-
(2012)
Macromol. Biosci.
, vol.12
, Issue.2
, pp. 241-250
-
-
Liu, Y.1
Hu, J.2
Zhuang, X.3
Zhang, P.4
Wei, Y.5
Wang, X.6
-
152
-
-
84925753322
-
Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells
-
2015-03-04
-
[152] Eftimov, P., Stefanova, N., Lalchev, Z., Georgiev, G.A., Effect of hydrophilic polymers on the wettability, static and dynamic, of solid substrate covered by confluent monolayer of air-damaged SIRC cells. Biotechnol. Biotec EQ 29:2 (2015), 390–394 2015-03-04.
-
(2015)
Biotechnol. Biotec EQ
, vol.29
, Issue.2
, pp. 390-394
-
-
Eftimov, P.1
Stefanova, N.2
Lalchev, Z.3
Georgiev, G.A.4
-
153
-
-
84926459284
-
Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering
-
[153] Stewart, E., Kobayashi, N.R., Higgins, M.J., Quigley, A.F., Jamali, S., Moulton, S.E., et al. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng. C Methods 21:4 (2015), 385–393.
-
(2015)
Tissue Eng. C Methods
, vol.21
, Issue.4
, pp. 385-393
-
-
Stewart, E.1
Kobayashi, N.R.2
Higgins, M.J.3
Quigley, A.F.4
Jamali, S.5
Moulton, S.E.6
-
154
-
-
80052577984
-
Extracellular electrical fields direct wound healing and regeneration
-
[154] Messerli, M.A., Graham, D.M., Extracellular electrical fields direct wound healing and regeneration. Biol. Bull. 221:1 (2011), 79–92.
-
(2011)
Biol. Bull.
, vol.221
, Issue.1
, pp. 79-92
-
-
Messerli, M.A.1
Graham, D.M.2
-
155
-
-
60849123431
-
The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields
-
[155] Huang, L., Cormie, P., Messerli, M.A., Robinson, K.R., The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields. J. Cell Physiol. 219:1 (2009), 162–172.
-
(2009)
J. Cell Physiol.
, vol.219
, Issue.1
, pp. 162-172
-
-
Huang, L.1
Cormie, P.2
Messerli, M.A.3
Robinson, K.R.4
-
156
-
-
77955713567
-
Effects of physiological electric fields on migration of human dermal fibroblasts
-
[156] Guo, A., Song, B., Reid, B., Gu, Y., Forrester, J.V., Jahoda, C.A., et al. Effects of physiological electric fields on migration of human dermal fibroblasts. J. Invest. Dermatol. 130:9 (2010), 2320–2327.
-
(2010)
J. Invest. Dermatol.
, vol.130
, Issue.9
, pp. 2320-2327
-
-
Guo, A.1
Song, B.2
Reid, B.3
Gu, Y.4
Forrester, J.V.5
Jahoda, C.A.6
-
157
-
-
0037108798
-
Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo
-
[157] Song, B., Zhao, M., Forrester, J.V., McCaig, C.D., Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. 99:21 (2002), 13577–13582.
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, Issue.21
, pp. 13577-13582
-
-
Song, B.1
Zhao, M.2
Forrester, J.V.3
McCaig, C.D.4
-
158
-
-
84881503335
-
Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels
-
[158] Ricotti, L., Fujie, T., Vazão, H., Ciofani, G., Marotta, R., Brescia, R., et al. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PloS One, 8(8), 2013, e71707.
-
(2013)
PloS One
, vol.8
, Issue.8
, pp. e71707
-
-
Ricotti, L.1
Fujie, T.2
Vazão, H.3
Ciofani, G.4
Marotta, R.5
Brescia, R.6
-
159
-
-
84887425287
-
Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane
-
[159] Guo, W., Cheng, C., Wu, Y., Jiang, Y., Gao, J., Li, D., et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 25:42 (2013), 6064–6068.
-
(2013)
Adv. Mater.
, vol.25
, Issue.42
, pp. 6064-6068
-
-
Guo, W.1
Cheng, C.2
Wu, Y.3
Jiang, Y.4
Gao, J.5
Li, D.6
-
160
-
-
79954578079
-
Biomimetic smart nanopores and nanochannels
-
[160] Hou, X., Guo, W., Jiang, L., Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40:5 (2011), 2385–2401.
-
(2011)
Chem. Soc. Rev.
, vol.40
, Issue.5
, pp. 2385-2401
-
-
Hou, X.1
Guo, W.2
Jiang, L.3
-
161
-
-
84925193803
-
Two-dimensional ion channel based soft-matter piezoelectricity
-
[161] Guo, W., Jiang, L., Two-dimensional ion channel based soft-matter piezoelectricity. Sci. China Mater. 57:1 (2014), 2–6.
-
(2014)
Sci. China Mater.
, vol.57
, Issue.1
, pp. 2-6
-
-
Guo, W.1
Jiang, L.2
-
162
-
-
34247531305
-
Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins
-
2007-04-01
-
[162] Ogoshi, T., Takashima, Y., Yamaguchi, H., Harada, A., Chemically-responsive sol−gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins. J. Am. Chem. Soc. 129:16 (2007), 4878–4879 2007-04-01.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.16
, pp. 4878-4879
-
-
Ogoshi, T.1
Takashima, Y.2
Yamaguchi, H.3
Harada, A.4
-
163
-
-
79751517620
-
Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials
-
2011-01-01
-
[163] Mire, C.A., Agrawal, A., Wallace, G.G., Calvert, P., Het Panhuis, M., Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. J. Mater. Chem. 21:8 (2011), 2671–2678 2011-01-01.
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.8
, pp. 2671-2678
-
-
Mire, C.A.1
Agrawal, A.2
Wallace, G.G.3
Calvert, P.4
Het Panhuis, M.5
-
164
-
-
84897557208
-
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
-
2014-04-01
-
[164] Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M., Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:7 (2014), 3240–3253 2014-04-01.
-
(2014)
Anal. Chem.
, vol.86
, Issue.7
, pp. 3240-3253
-
-
Gross, B.C.1
Erkal, J.L.2
Lockwood, S.Y.3
Chen, C.4
Spence, D.M.5
-
165
-
-
84928819603
-
Highly compressible 3D periodic graphene aerogel microlattices
-
2015-04-22
-
[165] Zhu, C., Han, T.Y., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun., 6, 2015, 6962 2015-04-22.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6962
-
-
Zhu, C.1
Han, T.Y.2
Duoss, E.B.3
Golobic, A.M.4
Kuntz, J.D.5
Spadaccini, C.M.6
-
166
-
-
84455205627
-
Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine
-
[166] Xing, X., Liu, S., Yu, J., Lian, W., Huang, J., Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens. Bioelectron. 31:1 (2012), 277–283.
-
(2012)
Biosens. Bioelectron.
, vol.31
, Issue.1
, pp. 277-283
-
-
Xing, X.1
Liu, S.2
Yu, J.3
Lian, W.4
Huang, J.5
-
167
-
-
84897499019
-
A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor
-
[167] Fatoni, A., Numnuam, A., Kanatharana, P., Limbut, W., Thavarungkul, P., A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor. Electrochim. Acta 130 (2014), 296–304.
-
(2014)
Electrochim. Acta
, vol.130
, pp. 296-304
-
-
Fatoni, A.1
Numnuam, A.2
Kanatharana, P.3
Limbut, W.4
Thavarungkul, P.5
-
168
-
-
4444313518
-
Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes
-
[168] Zhang, M., Smith, A., Gorski, W., Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76:17 (2004), 5045–5050.
-
(2004)
Anal. Chem.
, vol.76
, Issue.17
, pp. 5045-5050
-
-
Zhang, M.1
Smith, A.2
Gorski, W.3
-
169
-
-
26844537983
-
DNA biosensor based on chitosan film doped with carbon nanotubes
-
[169] Li, J., Liu, Q., Liu, Y., Liu, S., Yao, S., DNA biosensor based on chitosan film doped with carbon nanotubes. Anal. Biochem. 346:1 (2005), 107–114.
-
(2005)
Anal. Biochem.
, vol.346
, Issue.1
, pp. 107-114
-
-
Li, J.1
Liu, Q.2
Liu, Y.3
Liu, S.4
Yao, S.5
-
170
-
-
17444406294
-
An electrochemical investigation of hemoglobin and catalase incorporated in collagen films
-
[170] Li, M., He, P., Zhang, Y., Hu, N., An electrochemical investigation of hemoglobin and catalase incorporated in collagen films. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 1749:1 (2005), 43–51.
-
(2005)
Biochim. Biophys. Acta (BBA)-Proteins Proteom.
, vol.1749
, Issue.1
, pp. 43-51
-
-
Li, M.1
He, P.2
Zhang, Y.3
Hu, N.4
-
171
-
-
34447124600
-
Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix
-
[171] Zong, S., Cao, Y., Ju, H., Amperometric biosensor for hydrogen peroxide based on myoglobin doped multiwalled carbon nanotube enhanced grafted collagen matrix. Anal. Lett. 40:8 (2007), 1556–1568.
-
(2007)
Anal. Lett.
, vol.40
, Issue.8
, pp. 1556-1568
-
-
Zong, S.1
Cao, Y.2
Ju, H.3
-
172
-
-
84906536187
-
Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film
-
[172] Zhang, B., Zhou, J., Li, S., Zhang, X., Huang, D., He, Y., et al. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta 131 (2015), 243–248.
-
(2015)
Talanta
, vol.131
, pp. 243-248
-
-
Zhang, B.1
Zhou, J.2
Li, S.3
Zhang, X.4
Huang, D.5
He, Y.6
-
173
-
-
0028958595
-
Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels
-
[173] Tomer, R., Dimitrijevic, D., Florence, A.T., Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J. Control Release 33:3 (1995), 405–413.
-
(1995)
J. Control Release
, vol.33
, Issue.3
, pp. 405-413
-
-
Tomer, R.1
Dimitrijevic, D.2
Florence, A.T.3
-
174
-
-
80053507288
-
Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study
-
2011-01-01
-
[174] Huang, W., Lee, T., Hsiao, C., Chen, S., Liu, D., Characterization and drug release behavior of chip-like amphiphilic chitosan-silica hybrid hydrogel for electrically modulated release of ethosuximide: an in vitro study. J. Mater. Chem. 21:40 (2011), 16077–16085 2011-01-01.
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.40
, pp. 16077-16085
-
-
Huang, W.1
Lee, T.2
Hsiao, C.3
Chen, S.4
Liu, D.5
-
175
-
-
0032638116
-
Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid)
-
1999-01-01
-
[175] Lee, J.W., Kim, S.Y., Kim, S.S., Lee, Y.M., Lee, K.H., Kim, S.J., Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J. Appl. Polym. Sci. 73:1 (1999), 113–120 1999-01-01.
-
(1999)
J. Appl. Polym. Sci.
, vol.73
, Issue.1
, pp. 113-120
-
-
Lee, J.W.1
Kim, S.Y.2
Kim, S.S.3
Lee, Y.M.4
Lee, K.H.5
Kim, S.J.6
-
176
-
-
75149149000
-
Chitosan-based hydrogels for controlled, localized drug delivery
-
2010-01-31
-
[176] Bhattarai, N., Gunn, J., Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62:1 (2010), 83–99 2010-01-31.
-
(2010)
Adv. Drug Deliv. Rev.
, vol.62
, Issue.1
, pp. 83-99
-
-
Bhattarai, N.1
Gunn, J.2
Zhang, M.3
-
177
-
-
33244486305
-
Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field
-
2006-02-01
-
[177] Liu, G., Zhao, X., Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field. J. Macromol. Sci. A 43:2 (2006), 345–354 2006-02-01.
-
(2006)
J. Macromol. Sci. A
, vol.43
, Issue.2
, pp. 345-354
-
-
Liu, G.1
Zhao, X.2
-
178
-
-
84875935951
-
Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems
-
[178] Spizzirri, U.G., Hampel, S., Cirillo, G., Nicoletta, F.P., Hassan, A., Vittorio, O., et al. Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int. J. Pharm. 448:1 (2013), 115–122.
-
(2013)
Int. J. Pharm.
, vol.448
, Issue.1
, pp. 115-122
-
-
Spizzirri, U.G.1
Hampel, S.2
Cirillo, G.3
Nicoletta, F.P.4
Hassan, A.5
Vittorio, O.6
-
179
-
-
84863331474
-
Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel
-
2012-01-01
-
[179] Paradee, N., Sirivat, A., Niamlang, S., Prissanaroon-Ouajai, W., Effects of crosslinking ratio, model drugs, and electric field strength on electrically controlled release for alginate-based hydrogel. J. Mater. Sci. Mater. Med. 23:4 (2012), 999–1010 2012-01-01.
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, Issue.4
, pp. 999-1010
-
-
Paradee, N.1
Sirivat, A.2
Niamlang, S.3
Prissanaroon-Ouajai, W.4
-
180
-
-
73849090515
-
Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development
-
[180] Kulkarni, R.V., Setty, C.M., Sa, B., Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development. J. Appl. Polym. Sci. 115:2 (2010), 1180–1188.
-
(2010)
J. Appl. Polym. Sci.
, vol.115
, Issue.2
, pp. 1180-1188
-
-
Kulkarni, R.V.1
Setty, C.M.2
Sa, B.3
-
181
-
-
84907420331
-
Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel
-
[181] Liu, Y., Yan, K., Jiang, G., Xiong, Y., Du, Y., Shi, X., Electrical signal guided ibuprofen release from electrodeposited chitosan hydrogel. Int. J. Polym. Sci., 2014, 2014, 8.
-
(2014)
Int. J. Polym. Sci.
, vol.2014
, pp. 8
-
-
Liu, Y.1
Yan, K.2
Jiang, G.3
Xiong, Y.4
Du, Y.5
Shi, X.6
-
182
-
-
84926296202
-
Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery
-
2015-01-01
-
[182] Thorngkham, P., Paradee, N., Niamlang, S., Sirivat, A., Permeation study of indomethacin from polycarbazole/natural rubber blend film for electric field controlled transdermal delivery. J. Pharm. Sci-US 104:5 (2015), 1795–1803 2015-01-01.
-
(2015)
J. Pharm. Sci-US
, vol.104
, Issue.5
, pp. 1795-1803
-
-
Thorngkham, P.1
Paradee, N.2
Niamlang, S.3
Sirivat, A.4
-
183
-
-
84929179189
-
Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo
-
[183] Lee, J.Y., Khaing, Z.Z., Siegel, J.J., Schmidt, C.E., Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo. RSC Adv. 5:49 (2015), 39228–39231.
-
(2015)
RSC Adv.
, vol.5
, Issue.49
, pp. 39228-39231
-
-
Lee, J.Y.1
Khaing, Z.Z.2
Siegel, J.J.3
Schmidt, C.E.4
-
184
-
-
80755190040
-
Nanowired three-dimensional cardiac patches
-
2011-11-01
-
[184] Dvir, T., Timko, B.P., Brigham, M.D., Naik, S.R., Karajanagi, S.S., Levy, O., et al. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6:11 (2011), 720–725 2011-11-01.
-
(2011)
Nat. Nanotechnol.
, vol.6
, Issue.11
, pp. 720-725
-
-
Dvir, T.1
Timko, B.P.2
Brigham, M.D.3
Naik, S.R.4
Karajanagi, S.S.5
Levy, O.6
-
185
-
-
84885650185
-
Electromechanical polyaniline–cellulose hydrogels with high compressive strength
-
[185] Shi, X., Hu, Y., Tu, K., Zhang, L., Wang, H., Xu, J., et al. Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Mat. 9:42 (2013), 10129–10134.
-
(2013)
Soft Mat.
, vol.9
, Issue.42
, pp. 10129-10134
-
-
Shi, X.1
Hu, Y.2
Tu, K.3
Zhang, L.4
Wang, H.5
Xu, J.6
-
186
-
-
84942278908
-
Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation
-
2015-09-22
-
[186] Wang, L., Wu, Y., Guo, B., Ma, P.X., Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9:9 (2015), 9167–9179 2015-09-22.
-
(2015)
ACS Nano
, vol.9
, Issue.9
, pp. 9167-9179
-
-
Wang, L.1
Wu, Y.2
Guo, B.3
Ma, P.X.4
-
187
-
-
84952896310
-
Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering
-
2015-12-30
-
[187] Chen, J., Dong, R., Ge, J., Guo, B., Ma, P.X., Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering. ACS Appl. Mater. Inter. 7:51 (2015), 28273–28285 2015-12-30.
-
(2015)
ACS Appl. Mater. Inter.
, vol.7
, Issue.51
, pp. 28273-28285
-
-
Chen, J.1
Dong, R.2
Ge, J.3
Guo, B.4
Ma, P.X.5
-
188
-
-
33845429610
-
Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend
-
[188] Kim, S.J., Kim, M.S., Kim, S.I., Spinks, G.M., Kim, B.C., Wallace, G.G., Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem. Mater. 18:24 (2006), 5805–5809.
-
(2006)
Chem. Mater.
, vol.18
, Issue.24
, pp. 5805-5809
-
-
Kim, S.J.1
Kim, M.S.2
Kim, S.I.3
Spinks, G.M.4
Kim, B.C.5
Wallace, G.G.6
-
189
-
-
81155126260
-
Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle
-
[189] Ismail, Y.A., Martínez, J.G., Al Harrasi, A.S., Kim, S.J., Otero, T.F., Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle. Sens. Actuat. B Chem. 160:1 (2011), 1180–1190.
-
(2011)
Sens. Actuat. B Chem.
, vol.160
, Issue.1
, pp. 1180-1190
-
-
Ismail, Y.A.1
Martínez, J.G.2
Al Harrasi, A.S.3
Kim, S.J.4
Otero, T.F.5
-
190
-
-
84859739267
-
Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition
-
[190] Huang, H., Lü, S., Zhang, X., Shao, Z., Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel–sol transition. Soft Mat. 8:17 (2012), 4609–4615.
-
(2012)
Soft Mat.
, vol.8
, Issue.17
, pp. 4609-4615
-
-
Huang, H.1
Lü, S.2
Zhang, X.3
Shao, Z.4
-
191
-
-
78650721733
-
Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
-
[191] Xu, Y., Wu, Q., Sun, Y., Bai, H., Shi, G., Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:12 (2010), 7358–7362.
-
(2010)
ACS Nano
, vol.4
, Issue.12
, pp. 7358-7362
-
-
Xu, Y.1
Wu, Q.2
Sun, Y.3
Bai, H.4
Shi, G.5
-
192
-
-
84908099028
-
Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices
-
[192] Li, S., Huang, D., Yang, J., Zhang, B., Zhang, X., Yang, G., et al. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9 (2014), 309–317.
-
(2014)
Nano Energy
, vol.9
, pp. 309-317
-
-
Li, S.1
Huang, D.2
Yang, J.3
Zhang, B.4
Zhang, X.5
Yang, G.6
|