-
1
-
-
84924043245
-
Coronaviruses: an overview of their replication and pathogenesis
-
Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 1282:1-23. http://dx.doi.org/10.1007/978-1-4939-2438-7_1
-
(2015)
Methods Mol Biol
, vol.1282
, pp. 1-23
-
-
Fehr, A.R.1
Perlman, S.2
-
2
-
-
23844448345
-
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
-
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A 102:11876-11881. http://dx.doi.org/10.1073/pnas.0505577102
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 11876-11881
-
-
Simmons, G.1
Gosalia, D.N.2
Rennekamp, A.J.3
Reeves, J.D.4
Diamond, S.L.5
Bates, P.6
-
3
-
-
84912120721
-
Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
-
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJ, Bosch BJ, de Haan CA. 2014. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10:e1004502. http://dx.doi.org/10.1371/journal.ppat.1004502
-
(2014)
PLoS Pathog
, vol.10
-
-
Burkard, C.1
Verheije, M.H.2
Wicht, O.3
van Kasteren, S.I.4
van Kuppeveld, F.J.5
Haagmans, B.L.6
Pelkmans, L.7
Rottier, P.J.8
Bosch, B.J.9
de Haan, C.A.10
-
4
-
-
1842536303
-
Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs
-
Tan EL, Ooi EE, Lin CY, Tan HC, Ling AE, Lim B, Stanton LW. 2004. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 10:581-586. http://dx.doi.org/10.3201/eid1004.030458
-
(2004)
Emerg Infect Dis
, vol.10
, pp. 581-586
-
-
Tan, E.L.1
Ooi, E.E.2
Lin, C.Y.3
Tan, H.C.4
Ling, A.E.5
Lim, B.6
Stanton, L.W.7
-
5
-
-
2942750460
-
Virtual screening for SARSCoV protease based on KZ7088 pharmacophore points
-
Sirois S, Wei DQ, Du Q, Chou KC. 2004. Virtual screening for SARSCoV protease based on KZ7088 pharmacophore points. J Chem Infect Comput Sci 44:1111-1122. http://dx.doi.org/10.1021/ci034270n
-
(2004)
J Chem Infect Comput Sci
, vol.44
, pp. 1111-1122
-
-
Sirois, S.1
Wei, D.Q.2
Du, Q.3
Chou, K.C.4
-
6
-
-
0041848237
-
Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS
-
Chou KC, Wei DQ, Zhong WZ. 2003. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun 308:148-151. http://dx.doi.org/10.1016/S0006-291X(03)01342-1
-
(2003)
Biochem Biophys Res Commun
, vol.308
, pp. 148-151
-
-
Chou, K.C.1
Wei, D.Q.2
Zhong, W.Z.3
-
7
-
-
0038120984
-
Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs
-
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763-1767. http://dx.doi.org/10.1126/science.1085658
-
(2003)
Science
, vol.300
, pp. 1763-1767
-
-
Anand, K.1
Ziebuhr, J.2
Wadhwani, P.3
Mesters, J.R.4
Hilgenfeld, R.5
-
8
-
-
2942635630
-
Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA
-
Hertzig T, Scandella E, Schelle B, Ziebuhr J, Siddell SG, Ludewig B, Thiel V. 2004. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol 85:1717-1725. http://dx.doi.org/10.1099/vir.0.80044-0
-
(2004)
J Gen Virol
, vol.85
, pp. 1717-1725
-
-
Hertzig, T.1
Scandella, E.2
Schelle, B.3
Ziebuhr, J.4
Siddell, S.G.5
Ludewig, B.6
Thiel, V.7
-
9
-
-
84865427975
-
Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase
-
Adedeji AO, Singh K, Calcaterra NE, DeDiego ML, Enjuanes L, Weiss S, Sarafianos SG. 2012. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother 56:4718-4728. http://dx.doi.org/10.1128/AAC.00957-12
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 4718-4728
-
-
Adedeji, A.O.1
Singh, K.2
Calcaterra, N.E.3
DeDiego, M.L.4
Enjuanes, L.5
Weiss, S.6
Sarafianos, S.G.7
-
11
-
-
84872474740
-
Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase
-
Adedeji AO, Singh K, Sarafianos SG. 2012. Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase. Cell Mol Biol (Noisy-le-grand) 58:114-121
-
(2012)
Cell Mol Biol (Noisy-le-grand)
, vol.58
, pp. 114-121
-
-
Adedeji, A.O.1
Singh, K.2
Sarafianos, S.G.3
-
12
-
-
49649123918
-
The management of coronavirus infections with particular reference to SARS
-
Wong SS, Yuen KY. 2008. The management of coronavirus infections with particular reference to SARS. J Antimicrob Chemother 62:437-441. http://dx.doi.org/10.1093/jac/dkn243
-
(2008)
J Antimicrob Chemother
, vol.62
, pp. 437-441
-
-
Wong, S.S.1
Yuen, K.Y.2
-
13
-
-
84902176510
-
Repurposing of clinically developed drugs for treatment of Middle East respiratory coronavirus infection
-
Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jr, Jahrling PB, Laidlaw M, Johansen LM, Lear CM, Glass PJ, Hensley LE, Frieman MB. 2014. Repurposing of clinically developed drugs for treatment of Middle East respiratory coronavirus infection. Antimicrob Agents Chemother 58: 4885-4893. http://dx.doi.org/10.1128/AAC.03036-14
-
(2014)
Antimicrob Agents Chemother
, vol.58
, pp. 4885-4893
-
-
Dyall, J.1
Coleman, C.M.2
Hart, B.J.3
Venkataraman, T.4
Holbrook, M.R.5
Kindrachuk, J.6
Johnson, R.F.7
Olinger, G.G.8
Jahrling, P.B.9
Laidlaw, M.10
Johansen, L.M.11
Lear, C.M.12
Glass, P.J.13
Hensley, L.E.14
Frieman, M.B.15
-
14
-
-
84857693882
-
Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase
-
Garcia M, Cooper A, Shi W, Bornmann W, Carrion R, Kalman D, Nabel GJ. 2012. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase. Sci Transl Med 4:123ra124
-
(2012)
Sci Transl Med
, vol.4
-
-
Garcia, M.1
Cooper, A.2
Shi, W.3
Bornmann, W.4
Carrion, R.5
Kalman, D.6
Nabel, G.J.7
-
15
-
-
84924964870
-
Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs
-
Kouznetsova J, Sun W, Martinez-Romero C, Tawa G, Shinn P, Chen CZ, Schimmer A, Sanderson P, McKew JC, Zheng W, Garcia-Sastre A. 2014. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg Microbes Infect 3:e84. http://dx.doi.org/10.1038/emi.2014.88
-
(2014)
Emerg Microbes Infect
, vol.3
, pp. e84
-
-
Kouznetsova, J.1
Sun, W.2
Martinez-Romero, C.3
Tawa, G.4
Shinn, P.5
Chen, C.Z.6
Schimmer, A.7
Sanderson, P.8
McKew, J.C.9
Zheng, W.10
Garcia-Sastre, A.11
-
16
-
-
30344475861
-
Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions
-
Coyne CB, Bergelson JM. 2006. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124: 119-131. http://dx.doi.org/10.1016/j.cell.2005.10.035
-
(2006)
Cell
, vol.124
, pp. 119-131
-
-
Coyne, C.B.1
Bergelson, J.M.2
-
17
-
-
32944461681
-
Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus
-
Newsome TP, Weisswange I, Frischknecht F, Way M. 2006. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell Microbiol 8:233-241. http://dx.doi.org/10.1111/j.1462-5822.2005.00613.x
-
(2006)
Cell Microbiol
, vol.8
, pp. 233-241
-
-
Newsome, T.P.1
Weisswange, I.2
Frischknecht, F.3
Way, M.4
-
18
-
-
33846492868
-
A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice
-
Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K. 2007. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog 3:e5. http://dx.doi.org/10.1371/journal.ppat.0030005
-
(2007)
PLoS Pathog
, vol.3
, pp. e5
-
-
Roberts, A.1
Deming, D.2
Paddock, C.D.3
Cheng, A.4
Yount, B.5
Vogel, L.6
Herman, B.D.7
Sheahan, T.8
Heise, M.9
Genrich, G.L.10
Zaki, S.R.11
Baric, R.12
Subbarao, K.13
-
19
-
-
84856908736
-
Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease
-
Frieman M, Yount B, Agnihothram S, Page C, Donaldson E, Roberts A, Vogel L, WoodruffB, Scorpio D, Subbarao K, Baric RS. 2012. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol 86:884-897. http://dx.doi.org/10.1128/JVI.05957-11
-
(2012)
J Virol
, vol.86
, pp. 884-897
-
-
Frieman, M.1
Yount, B.2
Agnihothram, S.3
Page, C.4
Donaldson, E.5
Roberts, A.6
Vogel, L.7
Woodruff, B.8
Scorpio, D.9
Subbarao, K.10
Baric, R.S.11
-
20
-
-
84949220116
-
Growth and quantification of MERSCoV infection
-
Coleman CM, Frieman MB. 2015. Growth and quantification of MERSCoV infection. Curr Protoc Microbiol 37:2-15. http://dx.doi.org/10.1002/9780471729259.mc15e02s37
-
(2015)
Curr Protoc Microbiol
, vol.37
, pp. 2-15
-
-
Coleman, C.M.1
Frieman, M.B.2
-
21
-
-
84949652761
-
Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference
-
Taylor JK, Coleman CM, Postel S, Sisk JM, Bernbaum JG, Venkatarajan T, Sundberg EJ, Frieman MB. 2015. Severe acute respiratory syndrome coronavirus ORF7a inhibits bone marrow stromal antigen 2 virion tethering through a novel mechanism of glycosylation interference. J Virol 89:11820-11833. http://dx.doi.org/10.1128/JVI.02274-15
-
(2015)
J Virol
, vol.89
, pp. 11820-11833
-
-
Taylor, J.K.1
Coleman, C.M.2
Postel, S.3
Sisk, J.M.4
Bernbaum, J.G.5
Venkatarajan, T.6
Sundberg, E.J.7
Frieman, M.B.8
-
22
-
-
84923050027
-
Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step
-
Mingo RM, Simmons JA, Shoemaker CJ, Nelson EA, Schornberg KL, D'Souza RS, Casanova JE, White JM. 2015. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J Virol 89:2931-2943. http://dx.doi.org/10.1128/JVI.03398-14
-
(2015)
J Virol
, vol.89
, pp. 2931-2943
-
-
Mingo, R.M.1
Simmons, J.A.2
Shoemaker, C.J.3
Nelson, E.A.4
Schornberg, K.L.5
D'Souza, R.S.6
Casanova, J.E.7
White, J.M.8
-
23
-
-
84881151167
-
Role of ABL family kinases in cancer: from leukaemia to solid tumours
-
Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. 2013. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13:559-571. http://dx.doi.org/10.1038/nrc3563
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 559-571
-
-
Greuber, E.K.1
Smith-Pearson, P.2
Wang, J.3
Pendergast, A.M.4
-
24
-
-
77956920417
-
ABL tyrosine kinases: evolution of function, regulation, and specificity
-
Colicelli J. 2010. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 3:re6. http://dx.doi.org/10.1126/scisignal.3139re6
-
(2010)
Sci Signal
, vol.3
-
-
Colicelli, J.1
-
25
-
-
70350379633
-
Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts
-
Bradley WD, Koleske AJ. 2009. Regulation of cell migration and morphogenesis by Abl-family kinases: emerging mechanisms and physiological contexts. J Cell Sci 122:3441-3454. http://dx.doi.org/10.1242/jcs.039859
-
(2009)
J Cell Sci
, vol.122
, pp. 3441-3454
-
-
Bradley, W.D.1
Koleske, A.J.2
-
26
-
-
84956954278
-
The emerging role of ABL kinases in solid tumors
-
Wang J, Pendergast AM. 2015. The emerging role of ABL kinases in solid tumors. Trends Cancer 1:110-123. http://dx.doi.org/10.1016/j.trecan.2015.07.004
-
(2015)
Trends Cancer
, vol.1
, pp. 110-123
-
-
Wang, J.1
Pendergast, A.M.2
-
27
-
-
33745283618
-
The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants
-
Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE. 2006. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790-5797. http://dx.doi.org/10.1158/0008-5472.CAN-05-4187
-
(2006)
Cancer Res
, vol.66
, pp. 5790-5797
-
-
Tokarski, J.S.1
Newitt, J.A.2
Chang, C.Y.3
Cheng, J.D.4
Wittekind, M.5
Kiefer, S.E.6
Kish, K.7
Lee, F.Y.8
Borzillerri, R.9
Lombardo, L.J.10
Xie, D.11
Zhang, Y.12
Klei, H.E.13
-
28
-
-
2942674409
-
Rab GTPases and myosin motors in organelle motility
-
Seabra MC, Coudrier E. 2004. Rab GTPases and myosin motors in organelle motility. Traffic 5:393-399. http://dx.doi.org/10.1111/j.1398-9219.2004.00190.x
-
(2004)
Traffic
, vol.5
, pp. 393-399
-
-
Seabra, M.C.1
Coudrier, E.2
-
29
-
-
46049119795
-
Endosomal trafficking of Src tyrosine kinase
-
Sandilands E, Frame MC. 2008. Endosomal trafficking of Src tyrosine kinase. Trends Cell Biol 18:322-329. http://dx.doi.org/10.1016/j.tcb.2008.05.004
-
(2008)
Trends Cell Biol
, vol.18
, pp. 322-329
-
-
Sandilands, E.1
Frame, M.C.2
-
30
-
-
79954628266
-
Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
-
Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S. 2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85:4122-4134. http://dx.doi.org/10.1128/JVI.02232-10
-
(2011)
J Virol
, vol.85
, pp. 4122-4134
-
-
Glowacka, I.1
Bertram, S.2
Muller, M.A.3
Allen, P.4
Soilleux, E.5
Pfefferle, S.6
Steffen, I.7
Tsegaye, T.S.8
He, Y.9
Gnirss, K.10
Niemeyer, D.11
Schneider, H.12
Drosten, C.13
Pohlmann, S.14
-
31
-
-
84862908396
-
Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease
-
Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, Niemeyer D, He Y, Simmons G, Drosten C, Soilleux EJ, Jahn O, Steffen I, Pohlmann S. 2011. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol 85:13363-13372. http://dx.doi.org/10.1128/JVI.05300-11
-
(2011)
J Virol
, vol.85
, pp. 13363-13372
-
-
Bertram, S.1
Glowacka, I.2
Muller, M.A.3
Lavender, H.4
Gnirss, K.5
Nehlmeier, I.6
Niemeyer, D.7
He, Y.8
Simmons, G.9
Drosten, C.10
Soilleux, E.J.11
Jahn, O.12
Steffen, I.13
Pohlmann, S.14
-
32
-
-
84878210363
-
TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium
-
Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, Welsch K, Winkler M, Schneider H, Hofmann-Winkler H, Thiel V, Pohlmann S. 2013. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol 87:6150-6160. http://dx.doi.org/10.1128/JVI.03372-12
-
(2013)
J Virol
, vol.87
, pp. 6150-6160
-
-
Bertram, S.1
Dijkman, R.2
Habjan, M.3
Heurich, A.4
Gierer, S.5
Glowacka, I.6
Welsch, K.7
Winkler, M.8
Schneider, H.9
Hofmann-Winkler, H.10
Thiel, V.11
Pohlmann, S.12
-
33
-
-
84885061894
-
Correlating cell line studies with tissue distribution of DPP4/TMPRSS2 and human biological samples may better define the viral tropism of MERS-CoV
-
Leow MK. 2013. Correlating cell line studies with tissue distribution of DPP4/TMPRSS2 and human biological samples may better define the viral tropism of MERS-CoV. J Infect Dis 208:1350-1351. http://dx.doi.org/10.1093/infdis/jit330
-
(2013)
J Infect Dis
, vol.208
, pp. 1350-1351
-
-
Leow, M.K.1
-
34
-
-
84877339392
-
The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies
-
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, Welsch K, Winkler M, Meyer B, Drosten C, Dittmer U, von Hahn T, Simmons G, Hofmann H, Pohlmann S. 2013. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87:5502-5511. http://dx.doi.org/10.1128/JVI.00128-13
-
(2013)
J Virol
, vol.87
, pp. 5502-5511
-
-
Gierer, S.1
Bertram, S.2
Kaup, F.3
Wrensch, F.4
Heurich, A.5
Kramer-Kuhl, A.6
Welsch, K.7
Winkler, M.8
Meyer, B.9
Drosten, C.10
Dittmer, U.11
von Hahn, T.12
Simmons, G.13
Hofmann, H.14
Pohlmann, S.15
-
35
-
-
84886731880
-
Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research
-
Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. 2013. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 100:605-614. http://dx.doi.org/10.1016/j.antiviral.2013.09.028
-
(2013)
Antiviral Res
, vol.100
, pp. 605-614
-
-
Simmons, G.1
Zmora, P.2
Gierer, S.3
Heurich, A.4
Pohlmann, S.5
-
36
-
-
84887169848
-
Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2
-
Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87:12552-12561. http://dx.doi.org/10.1128/JVI.01890-13
-
(2013)
J Virol
, vol.87
, pp. 12552-12561
-
-
Shirato, K.1
Kawase, M.2
Matsuyama, S.3
-
37
-
-
84929289846
-
Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV
-
Kalmanti L, Saussele S, Lauseker M, Muller MC, Dietz CT, Heinrich L, Hanfstein B, Proetel U, Fabarius A, Krause SW, Rinaldetti S, Dengler J, Falge C, Oppliger-Leibundgut E, Burchert A, Neubauer A, Kanz L, Stegelmann F, Pfreundschuh M, Spiekermann K, Scheid C, Pfirrmann M, Hochhaus A, Hasford J, Hehlmann R. 2015. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia 29:1123-1132. http://dx.doi.org/10.1038/leu.2015.36
-
(2015)
Leukemia
, vol.29
, pp. 1123-1132
-
-
Kalmanti, L.1
Saussele, S.2
Lauseker, M.3
Muller, M.C.4
Dietz, C.T.5
Heinrich, L.6
Hanfstein, B.7
Proetel, U.8
Fabarius, A.9
Krause, S.W.10
Rinaldetti, S.11
Dengler, J.12
Falge, C.13
Oppliger-Leibundgut, E.14
Burchert, A.15
Neubauer, A.16
Kanz, L.17
Stegelmann, F.18
Pfreundschuh, M.19
Spiekermann, K.20
Scheid, C.21
Pfirrmann, M.22
Hochhaus, A.23
Hasford, J.24
Hehlmann, R.25
more..
-
38
-
-
26444442452
-
Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib
-
O'Hare T, Walters DK, Stoffregen EP, Sherbenou DW, Heinrich MC, Deininger MW, Druker BJ. 2005. Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib. Clin Cancer Res 11:6987-6993. http://dx.doi.org/10.1158/1078-0432.CCR-05-0622
-
(2005)
Clin Cancer Res
, vol.11
, pp. 6987-6993
-
-
O'Hare, T.1
Walters, D.K.2
Stoffregen, E.P.3
Sherbenou, D.W.4
Heinrich, M.C.5
Deininger, M.W.6
Druker, B.J.7
|