메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 4498-4506

Temporal perception and prediction in ego-centric video

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; INTELLIGENT AGENTS; INTELLIGENT ROBOTS;

EID: 84973882750     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.511     Document Type: Conference Paper
Times cited : (65)

References (42)
  • 1
    • 80052890189 scopus 로고    scopus 로고
    • Novelty detection from an ego-centric perspective
    • O. Aghazadeh, J. Sullivan, and S. Carlsson. Novelty detection from an ego-centric perspective. In CVPR, 2011.
    • (2011) CVPR
    • Aghazadeh, O.1    Sullivan, J.2    Carlsson, S.3
  • 3
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 4
    • 84898784577 scopus 로고    scopus 로고
    • Space-time tradeoffs in photo sequencing
    • T. Dekel, Y. Moses, and S. Avidan. Space-time tradeoffs in photo sequencing. In ICCV, 2013.
    • (2013) ICCV
    • Dekel, T.1    Moses, Y.2    Avidan, S.3
  • 7
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VS-PETS, 2005.
    • (2005) VS-PETS
    • Dollar, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 9
    • 84856655308 scopus 로고    scopus 로고
    • Understanding egocentric activities
    • A. Fathi, A. Farhadi, and J. M. Rehg. Understanding egocentric activities. In ICCV, 2011.
    • (2011) ICCV
    • Fathi, A.1    Farhadi, A.2    Rehg, J.M.3
  • 10
    • 84866649288 scopus 로고    scopus 로고
    • Social interactions: A first-person perspective
    • A. Fathi, J. Hodgins, and J. Rehg. Social interactions: A first-person perspective. In CVPR, 2012.
    • (2012) CVPR
    • Fathi, A.1    Hodgins, J.2    Rehg, J.3
  • 11
    • 84881506730 scopus 로고    scopus 로고
    • Learning to recognize daily actions using gaze
    • A. Fathi, Y. Li, and J. Rehg. Learning to recognize daily actions using gaze. In ECCV. 2012.
    • (2012) ECCV
    • Fathi, A.1    Li, Y.2    Rehg, J.3
  • 12
    • 80052894345 scopus 로고    scopus 로고
    • Learning to recognize objects in egocentric activities
    • A. Fathi, X. Ren, and J. Rehg. Learning to recognize objects in egocentric activities. In CVPR, 2011.
    • (2011) CVPR
    • Fathi, A.1    Ren, X.2    Rehg, J.3
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84959255777 scopus 로고    scopus 로고
    • Matchnet: Unifying feature and metric learning for patchbased matching
    • X. Han, T. Leun, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying feature and metric learning for patchbased matching. In CVPR, 2015.
    • (2015) CVPR
    • Han, X.1    Leun, T.2    Jia, Y.3    Sukthankar, R.4    Berg, A.C.5
  • 16
    • 84866664428 scopus 로고    scopus 로고
    • Max-margin early event detectors
    • M. Hoai and F. De la Torre. Max-margin early event detectors. In CVPR, 2012.
    • (2012) CVPR
    • Hoai, M.1    De La Torre, F.2
  • 18
    • 80052870292 scopus 로고    scopus 로고
    • Fast unsupervised ego-action learning for first-person sports videos
    • K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast unsupervised ego-action learning for first-person sports videos. In CVPR, 2011.
    • (2011) CVPR
    • Kitani, K.1    Okabe, T.2    Sato, Y.3    Sugimoto, A.4
  • 20
    • 84898426452 scopus 로고    scopus 로고
    • A spatio-temporal descriptor based on 3d-gradients
    • A. Kläser, M. Marsza?ek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In BMVC, 2008.
    • (2008) BMVC
    • Kläser, A.1    Marszaek, M.2    Schmid, C.3
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84866723224 scopus 로고    scopus 로고
    • Discovering important people and objects for egocentric video summarization
    • Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for egocentric video summarization. In CVPR, 2012.
    • (2012) CVPR
    • Lee, Y.J.1    Ghosh, J.2    Grauman, K.3
  • 25
    • 84898812374 scopus 로고    scopus 로고
    • Learning to predict gaze in egocentric video
    • Y. Li, A. Fathi, and J. Rehg. Learning to predict gaze in egocentric video. In ICCV, 2013.
    • (2013) ICCV
    • Li, Y.1    Fathi, A.2    Rehg, J.3
  • 26
    • 84887342438 scopus 로고    scopus 로고
    • Story-driven summarization for egocentric video
    • Z. Lu and K. Grauman. Story-driven summarization for egocentric video. In CVPR, 2013.
    • (2013) CVPR
    • Lu, Z.1    Grauman, K.2
  • 27
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 28
    • 84856646751 scopus 로고    scopus 로고
    • Parsing video events with goal inference and intent prediction
    • M. Pei, Y. Jia, and S.-C. Zhu. Parsing video events with goal inference and intent prediction. In ICCV, 2011.
    • (2011) ICCV
    • Pei, M.1    Jia, Y.2    Zhu, S.-C.3
  • 30
    • 84866652986 scopus 로고    scopus 로고
    • Detecting activities of daily living in first-person camera views
    • H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person camera views. In CVPR, 2012.
    • (2012) CVPR
    • Pirsiavash, H.1    Ramanan, D.2
  • 31
    • 77955991434 scopus 로고    scopus 로고
    • Figure-ground segmentation improves handled object recognition in egocentric video
    • X. Ren and C. Gu. Figure-ground segmentation improves handled object recognition in egocentric video. In CVPR, 2010.
    • (2010) CVPR
    • Ren, X.1    Gu, C.2
  • 32
    • 84856688144 scopus 로고    scopus 로고
    • Human activity prediction: Early recognition of ongoing activities from streaming videos
    • M. Ryoo. Human activity prediction: Early recognition of ongoing activities from streaming videos. In ICCV, 2011.
    • (2011) ICCV
    • Ryoo, M.1
  • 33
    • 84887376594 scopus 로고    scopus 로고
    • First-person activity recognition: What are they doing to me? in
    • M. Ryoo and L. Matthies. First-person activity recognition: What are they doing to me? In CVPR, 2013.
    • (2013) CVPR
    • Ryoo, M.1    Matthies, L.2
  • 34
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition. ICASSP, 1978.
    • (1978) ICASSP
    • Sakoe, H.1    Chiba, S.2
  • 35
    • 84906510379 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. CoRR, 2014.
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 84911380009 scopus 로고    scopus 로고
    • Patch to the future: Unsupervised visual prediction
    • J. Walker, A. Gupta, and M. Hebert. Patch to the future: Unsupervised visual prediction. In CVPR, 2014.
    • (2014) CVPR
    • Walker, J.1    Gupta, A.2    Hebert, M.3
  • 38
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2009.
    • (2009) BMVC
    • Wang, H.1    Ullah, M.M.2    Klaser, A.3    Laptev, I.4    Schmid, C.5
  • 39
    • 80052905601 scopus 로고    scopus 로고
    • Who are you with and where are you going? in
    • K. Yamaguchi, A. Berg, L. Ortiz, and T. Berg. Who are you with and where are you going? In CVPR, 2011.
    • (2011) CVPR
    • Yamaguchi, K.1    Berg, A.2    Ortiz, L.3    Berg, T.4
  • 40
    • 84886833674 scopus 로고    scopus 로고
    • A data-driven approach for event prediction
    • J. Yuen and A. Torralba. A data-driven approach for event prediction. In ECCV, 2010.
    • (2010) ECCV
    • Yuen, J.1    Torralba, A.2
  • 42
    • 84937964578 scopus 로고    scopus 로고
    • Learning Deep Features for Scene Recognition using Places Database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.