-
1
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)
-
(2014)
International Conference on Machine Learning
, pp. 647-655
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
2
-
-
84898989329
-
Deep neural networks for object detection
-
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Neural Information Processing Systems, pp. 2553–2561 (2013)
-
(2013)
Neural Information Processing Systems
, pp. 2553-2561
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
3
-
-
84911198048
-
Deepface: Closing the gap to humanlevel performance in face verification
-
IEEE
-
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to humanlevel performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708. IEEE (2014)
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
4
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Neural Information Processing Systems, pp. 1097–1105 (2012)
-
(2012)
Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
5
-
-
69349090197
-
Learning deep architectures for ai. Found
-
Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
-
(2009)
Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
6
-
-
80053437034
-
On optimization methods for deep learning
-
Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep learning. In: International Conference on Machine Learning, pp. 265–272 (2011)
-
(2011)
International Conference on Machine Learning
, pp. 265-272
-
-
Le, Q.V.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.Y.6
-
7
-
-
84954314676
-
Deeply-supervised nets
-
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: International Conference on Artificial Intelligence and Statistics, pp. 562–570 (2015)
-
(2015)
International Conference on Artificial Intelligence and Statistics
, pp. 562-570
-
-
Lee, C.Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
79959347463
-
Transforming auto-encoders
-
Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.), Springer, Heidelberg
-
Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21735-7_6
-
(2011)
ICANN 2011. LNCS
, vol.6791
, pp. 44-51
-
-
Hinton, G.E.1
Krizhevsky, A.2
Wang, S.D.3
-
11
-
-
84973861992
-
Bi-shifting auto-encoder for unsupervised domain adaptation
-
Kan, M., Shan, S., Chen, X.: Bi-shifting auto-encoder for unsupervised domain adaptation. In: IEEE International Conference on Computer Vision, pp. 3846–3854 (2015)
-
(2015)
IEEE International Conference on Computer Vision
, pp. 3846-3854
-
-
Kan, M.1
Shan, S.2
Chen, X.3
-
12
-
-
84973915327
-
Domain generalization for object recognition with multi-task autoencoders
-
Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)
-
(2015)
IEEE International Conference on Computer Vision
, pp. 2551-2559
-
-
Ghifary, M.1
Bastiaan Kleijn, W.2
Zhang, M.3
Balduzzi, D.4
-
13
-
-
84969750897
-
On deep multi-view representation learning
-
Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning. In: International Conference on Machine Learning, pp. 1083–1092 (2015)
-
(2015)
International Conference on Machine Learning
, pp. 1083-1092
-
-
Wang, W.1
Arora, R.2
Livescu, K.3
Bilmes, J.4
-
14
-
-
84955106472
-
Bottom-up visual saliency estimation with deep autoencoder-based sparse reconstruction
-
Xia, C., Qi, F., Shi, G.: Bottom-up visual saliency estimation with deep autoencoder-based sparse reconstruction. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1227–1240 (2016)
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst
, vol.27
, Issue.6
, pp. 1227-1240
-
-
Xia, C.1
Qi, F.2
Shi, G.3
-
15
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
16
-
-
84863367863
-
Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
-
Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Neural Information Processing Systems, pp. 2080–2088 (2009)
-
(2009)
Neural Information Processing Systems
, pp. 2080-2088
-
-
Wright, J.1
Ganesh, A.2
Rao, S.3
Peng, Y.4
Ma, Y.5
-
17
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
19
-
-
84902283760
-
Generalized transfer subspace learning through low-rank constraint
-
Shao, M., Kit, D., Fu, Y.: Generalized transfer subspace learning through low-rank constraint. Int. J. Comput. Vis. 109(12), 74–93 (2014)
-
(2014)
Int. J. Comput. Vis
, vol.109
, Issue.12
, pp. 74-93
-
-
Shao, M.1
Kit, D.2
Fu, Y.3
-
20
-
-
84939823457
-
Deep low-rank coding for transfer learning
-
Ding, Z., Shao, M., Fu, Y.: Deep low-rank coding for transfer learning. In: Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 3453–3459 (2015)
-
(2015)
Twenty-Fourth International Joint Conference on Artificial Intelligence
, pp. 3453-3459
-
-
Ding, Z.1
Shao, M.2
Fu, Y.3
-
21
-
-
84866651199
-
Robust visual domain adaptation with low-rank reconstruction
-
IEEE
-
Jhuo, I.H., Liu, D., Lee, D., Chang, S.F., et al.: Robust visual domain adaptation with low-rank reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2168–2175. IEEE (2012)
-
(2012)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2168-2175
-
-
Jhuo, I.H.1
Liu, D.2
Lee, D.3
Chang, S.F.4
-
22
-
-
84866713695
-
Sparse representation for face recognition based on discriminative low-rank dictionary learning
-
IEEE
-
Ma, L., Wang, C., Xiao, B., Zhou, W.: Sparse representation for face recognition based on discriminative low-rank dictionary learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2586–2593. IEEE (2012)
-
(2012)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2586-2593
-
-
Ma, L.1
Wang, C.2
Xiao, B.3
Zhou, W.4
-
24
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
Cai, J.F., Candés, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
-
(2010)
SIAM J. Optim.
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.F.1
Candés, E.J.2
Shen, Z.3
-
25
-
-
33646887390
-
On the limited memory bfgs method for large scale optimization
-
Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization. Math. Program. 45(13), 503–528 (1989)
-
(1989)
Math. Program
, vol.45
, Issue.13
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
26
-
-
85013324239
-
Learning robust and discriminative subspace with low-rank constraints
-
Li, S., Fu, Y.: Learning robust and discriminative subspace with low-rank constraints. IEEE Trans. Neural Netw. Learn. Syst. PP (99), 1–13 (2015)
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst
-
-
Li, S.1
Fu, Y.2
-
27
-
-
0026065565
-
Eigenfaces for recognition
-
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
-
(1991)
J. Cogn. Neurosci
, vol.3
, Issue.1
, pp. 71-86
-
-
Turk, M.1
Pentland, A.2
-
28
-
-
0031185845
-
Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
-
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal.Mach. Intell. 19(7), 711–720 (1997)
-
(1997)
IEEE Trans. Pattern Anal.Mach. Intell
, vol.19
, Issue.7
, pp. 711-720
-
-
Belhumeur, P.N.1
Hespanha, J.P.2
Kriegman, D.J.3
-
29
-
-
84863042818
-
Latent low-rank representation for subspace segmentation and feature extraction
-
Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: IEEE International Conference on Computer Vision, pp. 1615–1622 (2011)
-
(2011)
IEEE International Conference on Computer Vision
, pp. 1615-1622
-
-
Liu, G.1
Yan, S.2
|