-
1
-
-
84923367677
-
Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology
-
[1] Trchounian, A., Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35 (2015), 103–113.
-
(2015)
Crit Rev Biotechnol
, vol.35
, pp. 103-113
-
-
Trchounian, A.1
-
2
-
-
84937154742
-
Hydrogen production from glycerol by Escherichia coli and other bacteria: an overview and perspectives
-
[2] Trchounian, K., Trchounian, A., Hydrogen production from glycerol by Escherichia coli and other bacteria: an overview and perspectives. Appl Energy 156 (2015), 174–184.
-
(2015)
Appl Energy
, vol.156
, pp. 174-184
-
-
Trchounian, K.1
Trchounian, A.2
-
3
-
-
84878414591
-
Fermentation of glycerol and production of valuable chemical and biofuel molecules
-
[3] Mattam, A.J., Clomburg, J.M., Gonzalez, R., Yazdani, S.S., Fermentation of glycerol and production of valuable chemical and biofuel molecules. Biotechnol Lett 35 (2013), 831–842.
-
(2013)
Biotechnol Lett
, vol.35
, pp. 831-842
-
-
Mattam, A.J.1
Clomburg, J.M.2
Gonzalez, R.3
Yazdani, S.S.4
-
4
-
-
33746868000
-
Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering
-
[4] Dharmadi, Y., Murarka, A., Gonzalez, R., Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94 (2006), 821–829.
-
(2006)
Biotechnol Bioeng
, vol.94
, pp. 821-829
-
-
Dharmadi, Y.1
Murarka, A.2
Gonzalez, R.3
-
5
-
-
39649103644
-
Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
-
[5] Murarka, A., Dharmadi, Y., Yazmandi, S.S., Gonzalez, R., Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74 (2008), 1124–1135.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 1124-1135
-
-
Murarka, A.1
Dharmadi, Y.2
Yazmandi, S.S.3
Gonzalez, R.4
-
6
-
-
84922463707
-
A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
-
[6] Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., et al. A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144 (2015), 73–95.
-
(2015)
Appl Energy
, vol.144
, pp. 73-95
-
-
Ghimire, A.1
Frunzo, L.2
Pirozzi, F.3
Trably, E.4
Escudie, R.5
Lens, P.N.L.6
-
8
-
-
84871622059
-
Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs
-
[8] Poladyan, A., Avagyan, A., Vassilian, A., Trchounian, A., Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 66 (2013), 49–55.
-
(2013)
Curr Microbiol
, vol.66
, pp. 49-55
-
-
Poladyan, A.1
Avagyan, A.2
Vassilian, A.3
Trchounian, A.4
-
10
-
-
84907289295
-
Bacterial formate hydrogenlyase complex
-
[10] McDowall, J.S., Murphy, B.J., Haumann, M., Palmer, T., Armstrong, A.F., Sargent, F., Bacterial formate hydrogenlyase complex. Proc Nat Acad Sci USA 111 (2014), E3948–56.
-
(2014)
Proc Nat Acad Sci USA
, vol.111
, pp. E3948-56
-
-
McDowall, J.S.1
Murphy, B.J.2
Haumann, M.3
Palmer, T.4
Armstrong, A.F.5
Sargent, F.6
-
11
-
-
0030725104
-
A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate-hydrogenlyase system
-
[11] Andrews, S.C., Berks, B.C., Mc Clay, J., Ambler, A., Quail, M.A., Golby, P., et al. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate-hydrogenlyase system. Microbiology 143 (1997), 3633–3647.
-
(1997)
Microbiology
, vol.143
, pp. 3633-3647
-
-
Andrews, S.C.1
Berks, B.C.2
Mc Clay, J.3
Ambler, A.4
Quail, M.A.5
Golby, P.6
-
12
-
-
84858700660
-
Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs
-
[12] Trchounian, K., Pinske, C., Sawers, G., Trchounian, A., Characterization of Escherichia coli [NiFe]-hydrogenase distribution during fermentative growth at different pHs. Cell Biochem Biophys 62 (2012), 433–440.
-
(2012)
Cell Biochem Biophys
, vol.62
, pp. 433-440
-
-
Trchounian, K.1
Pinske, C.2
Sawers, G.3
Trchounian, A.4
-
14
-
-
84875216800
-
2 production mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5
-
2 production mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrogen Energy 38 (2013), 3921–3929.
-
(2013)
Int J Hydrogen Energy
, vol.38
, pp. 3921-3929
-
-
Trchounian, K.1
Trchounian, A.2
-
15
-
-
85027919878
-
The model [NiFe]-hydrogenases of Escherichia coli
-
[15] Sargent, F., The model [NiFe]-hydrogenases of Escherichia coli. Adv Microb Physiol 68 (2016), 433–507.
-
(2016)
Adv Microb Physiol
, vol.68
, pp. 433-507
-
-
Sargent, F.1
-
16
-
-
84893732702
-
Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?
-
[16] Trchounian, A., Sawers, R.G., Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force?. Int Union Biochem Mol Biol, Life 66 (2014), 1–7.
-
(2014)
Int Union Biochem Mol Biol, Life
, vol.66
, pp. 1-7
-
-
Trchounian, A.1
Sawers, R.G.2
-
17
-
-
34248681266
-
Maturation of [NiFe]-hydrogenases in Escherichia coli
-
[17] Forzi, L., Sawers, R.G., Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20 (2007), 565–578.
-
(2007)
Biometals
, vol.20
, pp. 565-578
-
-
Forzi, L.1
Sawers, R.G.2
-
18
-
-
78049426276
-
The role of the ferric-uptake regulator Fur and iron homeostasis in controlling levels of the [NiFe]-hydrogenases in Escherichia coli
-
[18] Pinske, C., Sawers, G., The role of the ferric-uptake regulator Fur and iron homeostasis in controlling levels of the [NiFe]-hydrogenases in Escherichia coli. Int J Hydrogen Energy 35 (2010), 8938–8944.
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 8938-8944
-
-
Pinske, C.1
Sawers, G.2
-
19
-
-
84896768069
-
The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases
-
[19] Pinske, C., Sawers, G., The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases. Biomolecular concepts 5 (2014), 55–70.
-
(2014)
Biomolecular concepts
, vol.5
, pp. 55-70
-
-
Pinske, C.1
Sawers, G.2
-
20
-
-
55949093712
-
Metal ions in biological catalysis: from enzyme databases to general principles
-
[20] Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L., Thornton, J.M., Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13 (2008), 1205–1218.
-
(2008)
J Biol Inorg Chem
, vol.13
, pp. 1205-1218
-
-
Andreini, C.1
Bertini, I.2
Cavallaro, G.3
Holliday, G.L.4
Thornton, J.M.5
-
21
-
-
84928538572
-
Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase
-
[21] Ogata, H., Nishikawa, K., Lubitz, W., Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520:7548 (2015), 571–574.
-
(2015)
Nature
, vol.520
, Issue.7548
, pp. 571-574
-
-
Ogata, H.1
Nishikawa, K.2
Lubitz, W.3
-
22
-
-
77955571564
-
Enhancement of anaerobic hydrogen production by iron and nickel
-
[22] Karadag, D., Puhakka, J.A., Enhancement of anaerobic hydrogen production by iron and nickel. Int J Hydrogen Energy 35 (2010), 8554–8560.
-
(2010)
Int J Hydrogen Energy
, vol.35
, pp. 8554-8560
-
-
Karadag, D.1
Puhakka, J.A.2
-
23
-
-
84860295140
-
Ni (II) and Mg (II) ions as factors enhancing biohydrogen production by Rhodobacter sphaeroides from mineral springs
-
[23] Hakobyan, L., Gabrielyan, L., Trchounian, A., Ni (II) and Mg (II) ions as factors enhancing biohydrogen production by Rhodobacter sphaeroides from mineral springs. Int J Hydrogen Energy 37 (2012), 7486–7491.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 7486-7491
-
-
Hakobyan, L.1
Gabrielyan, L.2
Trchounian, A.3
-
24
-
-
84868199355
-
1-ATPase activity of Rhodobacter sphaeroides: effects of various heavy metal ions
-
1-ATPase activity of Rhodobacter sphaeroides: effects of various heavy metal ions. Int J Hydrogen Energy 37 (2012), 17794–17800.
-
(2012)
Int J Hydrogen Energy
, vol.37
, pp. 17794-17800
-
-
Hakobyan, L.1
Gabrielyan, L.2
Trchounian, A.3
-
25
-
-
33845612821
-
Redox sensing by Escherichia coli: effects of copper ions as oxidizers on proton-coupled membrane transport
-
[25] Kirakosyan, G., Trchounian, A., Redox sensing by Escherichia coli: effects of copper ions as oxidizers on proton-coupled membrane transport. Bioelectrochemistry 70 (2007), 58–63.
-
(2007)
Bioelectrochemistry
, vol.70
, pp. 58-63
-
-
Kirakosyan, G.1
Trchounian, A.2
-
26
-
-
0037934657
-
A simple energy-conserving system: proton reduction coupled to proton translocation
-
[26] Sapra, R., Bagramyan, K., Adams, M.W., A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Nat Acad Sci USA 100 (2003), 7545–7550.
-
(2003)
Proc Nat Acad Sci USA
, vol.100
, pp. 7545-7550
-
-
Sapra, R.1
Bagramyan, K.2
Adams, M.W.3
-
28
-
-
84903454473
-
Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers
-
[28] Gabrielyan, L., Sargsyan, H., Hakobyan, L., Trchounian, A., Regulation of hydrogen photoproduction in Rhodobacter sphaeroides batch culture by external oxidizers and reducers. Appl Energy 131 (2014), 20–25.
-
(2014)
Appl Energy
, vol.131
, pp. 20-25
-
-
Gabrielyan, L.1
Sargsyan, H.2
Hakobyan, L.3
Trchounian, A.4
-
29
-
-
84886410850
-
Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH
-
[29] Poladyan, A., Trchounian, K., Sawers, G., Trchounian, A., Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 348 (2013), 143–148.
-
(2013)
FEMS Microbiol Lett
, vol.348
, pp. 143-148
-
-
Poladyan, A.1
Trchounian, K.2
Sawers, G.3
Trchounian, A.4
-
30
-
-
77949897088
-
Establishment of the redox potential of water saturated with hydrogen
-
[30] Piskarev, M., Ushkanov, V.A., Aristova, N.A., Likhachev, P.P., Myslivets, T.S., Establishment of the redox potential of water saturated with hydrogen. Biophysics 55 (2010), 19–24.
-
(2010)
Biophysics
, vol.55
, pp. 19-24
-
-
Piskarev, M.1
Ushkanov, V.A.2
Aristova, N.A.3
Likhachev, P.P.4
Myslivets, T.S.5
-
31
-
-
50649125879
-
Copper (II) ions affect Escherichia coli membrane vesicle's SH-groups and a disulfide–dithiol interchange between membrane proteins
-
[31] Kirakosyan, G., Trchounian, K., Vardanyan, Z., Trchounian, A., Copper (II) ions affect Escherichia coli membrane vesicle's SH-groups and a disulfide–dithiol interchange between membrane proteins. Cell Biochem Biophys 51 (2008), 45–50.
-
(2008)
Cell Biochem Biophys
, vol.51
, pp. 45-50
-
-
Kirakosyan, G.1
Trchounian, K.2
Vardanyan, Z.3
Trchounian, A.4
-
32
-
-
84888389233
-
The effects of manganese (II) but not nickel (II) ions on Enterococcus hirae cell growth, redox potential decrease, and proton-coupled membrane transport
-
[32] Vardanyan, Z., Trchounian, A., The effects of manganese (II) but not nickel (II) ions on Enterococcus hirae cell growth, redox potential decrease, and proton-coupled membrane transport. Cell Biochem Biophys 67 (2013), 1301–1306.
-
(2013)
Cell Biochem Biophys
, vol.67
, pp. 1301-1306
-
-
Vardanyan, Z.1
Trchounian, A.2
-
33
-
-
84924912482
-
Cu(II), Fe(III) and Mn(II) combinations as environment stress factors have distinguishing effects on Enterococcus hirae
-
[33] Vardanyan, Z., Trchounian, A., Cu(II), Fe(III) and Mn(II) combinations as environment stress factors have distinguishing effects on Enterococcus hirae. J Environ Sci 28 (2015), 95–100.
-
(2015)
J Environ Sci
, vol.28
, pp. 95-100
-
-
Vardanyan, Z.1
Trchounian, A.2
-
34
-
-
45849129383
-
Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria
-
[in Russian]
-
[34] Vassilian, A., Trchounian, A., Effect of the medium redox potential on the growth and metabolism of anaerobic bacteria. Biophysics 53 (2008), 281–293 [in Russian].
-
(2008)
Biophysics
, vol.53
, pp. 281-293
-
-
Vassilian, A.1
Trchounian, A.2
-
35
-
-
84937156762
-
Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs
-
[35] Trchounian, K., Abrahamyan, V., Poladyan, A., Trchounian, A., Escherichia coli growth and hydrogen production in batch culture upon formate alone and with glycerol co-fermentation at different pHs. Int J Hydrogen Energy 40 (2015), 9935–9941.
-
(2015)
Int J Hydrogen Energy
, vol.40
, pp. 9935-9941
-
-
Trchounian, K.1
Abrahamyan, V.2
Poladyan, A.3
Trchounian, A.4
-
36
-
-
33845510309
-
Identification and characterization of a novel ABC iron transport system in Escherichia coli
-
[36] Ouyang, Z., Isaacson, R., Identification and characterization of a novel ABC iron transport system in Escherichia coli. Infect Immun 74 (2006), 6949–6956.
-
(2006)
Infect Immun
, vol.74
, pp. 6949-6956
-
-
Ouyang, Z.1
Isaacson, R.2
-
37
-
-
85027942582
-
Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark- and photo-fermentative bacteria using distillers grains
-
[37] Sargsyan, H., Trchounian, K., Gabrielyan, L., Trchounian, A., Novel approach of ethanol waste utilization: biohydrogen production by mixed cultures of dark- and photo-fermentative bacteria using distillers grains. Int J Hydrogen Energy 41 (2016), 2377–2382.
-
(2016)
Int J Hydrogen Energy
, vol.41
, pp. 2377-2382
-
-
Sargsyan, H.1
Trchounian, K.2
Gabrielyan, L.3
Trchounian, A.4
-
38
-
-
84897552172
-
Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?
-
[38] Schievano, A., Tenca, A., Lonati, S., Manzini, E., Adani, F., Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?. Appl Energy 124 (2014), 335–342.
-
(2014)
Appl Energy
, vol.124
, pp. 335-342
-
-
Schievano, A.1
Tenca, A.2
Lonati, S.3
Manzini, E.4
Adani, F.5
|