메뉴 건너뛰기




Volumn 30, Issue 11, 2011, Pages 1292-1301

Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples

Author keywords

Absolute risk reduction; Categorical data analysis; Hypothesis testing; Monte Carlo simulations; Propensity score; Propensity score matching; Risk difference; Statistical inference; Type I error rate

Indexed keywords

ANALYTICAL ERROR; ARTICLE; CLINICAL RESEARCH; CONTROLLED STUDY; DATA ANALYSIS; MACHINE LEARNING; MATHEMATICAL MODEL; MEDICAL RESEARCH; MONTE CARLO METHOD; PROPENSITY SCORE; RISK REDUCTION; STATISTICAL ANALYSIS;

EID: 79955639125     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4200     Document Type: Article
Times cited : (235)

References (18)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 72149119483 scopus 로고    scopus 로고
    • The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies
    • 10.1177/0272989X09341755.
    • Austin PC. The relative ability of different propensity-score methods to balance measured covariates between treated and untreated subjects in observational studies. Medical Decision Making 2009; 29:661-677. DOI: 10.1177/0272989X09341755.
    • (2009) Medical Decision Making , vol.29 , pp. 661-677
    • Austin, P.C.1
  • 3
    • 57749105474 scopus 로고    scopus 로고
    • Average causal effects from nonrandomized studies: a practical guide and simulated example
    • Schafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychological Methods 2008; 13:279-313.
    • (2008) Psychological Methods , vol.13 , pp. 279-313
    • Schafer, J.L.1    Kang, J.2
  • 4
    • 35448972461 scopus 로고    scopus 로고
    • Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement
    • 10.1016/j.jtcvs.2007.07.021
    • Austin PC. Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement. Journal of Thoracic and Cardiovascular Surgery 2007; 134:1128-1135. DOI: 10.1016/j.jtcvs.2007.07.021
    • (2007) Journal of Thoracic and Cardiovascular Surgery , vol.134 , pp. 1128-1135
    • Austin, P.C.1
  • 5
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity score matching in the medical literature from 1996 to 2003
    • 10.1002/sim.3150.
    • Austin PC. A critical appraisal of propensity score matching in the medical literature from 1996 to 2003. Statistics in Medicine 2008; 27:2037-2049. DOI: 10.1002/sim.3150.
    • (2008) Statistics in Medicine , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 6
    • 67249139797 scopus 로고    scopus 로고
    • A report card on propensity-score matching in the cardiology literature from 2004 to 2006: results of a systematic review
    • 10.1161/CIRCOUTCOMES.108.790634.
    • Austin PC. A report card on propensity-score matching in the cardiology literature from 2004 to 2006: results of a systematic review. Circulation: Cardiovascular Quality and Outcomes 2008; 1:62-67. DOI: 10.1161/CIRCOUTCOMES.108.790634.
    • (2008) Circulation: Cardiovascular Quality and Outcomes , vol.1 , pp. 62-67
    • Austin, P.C.1
  • 7
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review
    • Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods give similar results to traditional regression modeling in observational studies: a systematic review. Journal of Clinical Epidemiology 2005; 58:550-559.
    • (2005) Journal of Clinical Epidemiology , vol.58 , pp. 550-559
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3    Austin, P.C.4
  • 8
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals
    • 10.1016/j.jclinepi.2009.06.002.
    • Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63:142-153. DOI: 10.1016/j.jclinepi.2009.06.002.
    • (2010) Journal of Clinical Epidemiology , vol.63 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3    Juurlink, D.N.4    Stanbrook, M.B.5
  • 9
    • 77956314484 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating difference in proportions (risk differences or absolute risk reductions) in observational studies
    • 10.1002/sim.3854.
    • Austin PC. The performance of different propensity score methods for estimating difference in proportions (risk differences or absolute risk reductions) in observational studies. Statistics in Medicine 2010; 29:2137-2148. DOI: 10.1002/sim.3854.
    • (2010) Statistics in Medicine , vol.29 , pp. 2137-2148
    • Austin, P.C.1
  • 10
    • 77958600686 scopus 로고    scopus 로고
    • Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies
    • 10.1002/pst.433.
    • Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics 2010; DOI: 10.1002/pst.433.
    • (2010) Pharmaceutical Statistics
    • Austin, P.C.1
  • 11
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: a review
    • Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. The Review of Economics and Statistics 2004; 86:4-29.
    • (2004) The Review of Economics and Statistics , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 12
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • 10.1080/03610910903528301.
    • Austin PC. A data-generation process for data with specified risk differences or numbers needed to treat. Communications in Statistics - Simulation and Computation 2010; 39:563-577. DOI: 10.1080/03610910903528301.
    • (2010) Communications in Statistics - Simulation and Computation , vol.39 , pp. 563-577
    • Austin, P.C.1
  • 14
    • 0347917301 scopus 로고    scopus 로고
    • Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data
    • Agresti A, Min Y. Effects and non-effects of paired identical observations in comparing proportions with binary matched-pairs data. Statistics in Medicine 2004; 23:65-75.
    • (2004) Statistics in Medicine , vol.23 , pp. 65-75
    • Agresti, A.1    Min, Y.2
  • 15
    • 67249097811 scopus 로고    scopus 로고
    • Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Article 13. DOI: 10.2202/1557-4679.1146.
    • Austin PC. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 2009; 5:Article 13. DOI: 10.2202/1557-4679.1146.
    • (2009) The International Journal of Biostatistics , vol.5
    • Austin, P.C.1
  • 16
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
    • 10.1002/sim.2618.
    • Austin PC, Grootendorst P, Normand SLT, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26:754-768. DOI: 10.1002/sim.2618.
    • (2007) Statistics in Medicine , vol.26 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.T.3    Anderson, G.M.4
  • 17
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • 10.1002/sim.2781.
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Statistics in Medicine 2007; 26:3078-3094. DOI: 10.1002/sim.2781.
    • (2007) Statistics in Medicine , vol.26 , pp. 3078-3094
    • Austin, P.C.1
  • 18
    • 43049162150 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating relative risks
    • 10.1016/j.jclinepi.2007.07.011.
    • Austin PC. The performance of different propensity score methods for estimating relative risks. Journal of Clinical Epidemiology 2008; 61:537-545. DOI: 10.1016/j.jclinepi.2007.07.011.
    • (2008) Journal of Clinical Epidemiology , vol.61 , pp. 537-545
    • Austin, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.