메뉴 건너뛰기




Volumn 24, Issue 3, 2016, Pages 307-323

Bias amplification and bias unmasking

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84989244309     PISSN: 10471987     EISSN: 14764989     Source Type: Journal    
DOI: 10.1093/pan/mpw015     Document Type: Article
Times cited : (45)

References (44)
  • 3
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    • Austin, P., P. Grootendorst, and G. Anderson. 2007. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 26:734-53.
    • (2007) Statistics in Medicine , vol.26 , pp. 734-753
    • Austin, P.1    Grootendorst, P.2    Anderson, G.3
  • 4
    • 84883024693 scopus 로고    scopus 로고
    • Total, direct, and indirect effects in logit and probit models
    • Breen, R., K. Karlson, and A. Holm. 2013. Total, direct, and indirect effects in logit and probit models. Sociological Methods and Research 42(2):164191.
    • (2013) Sociological Methods and Research , vol.42 , Issue.2
    • Breen, R.1    Karlson, K.2    Holm, A.3
  • 12
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of treatment to non-randomized control group
    • D'Agostino, R. Jr. 1998. Propensity score methods for bias reduction in the comparison of treatment to non-randomized control group. Statistics in Medicine 17:314-16.
    • (1998) Statistics in Medicine , vol.17 , pp. 314-316
    • D'Agostino, R.1
  • 13
    • 84984992922 scopus 로고    scopus 로고
    • To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias
    • Ding, P., and L. Miratrix, 2014. To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias. Journal of Causal Inference 2:2-17.
    • (2014) Journal of Causal Inference , vol.2 , pp. 2-17
    • Ding, P.1    Miratrix, L.2
  • 14
    • 84874497435 scopus 로고    scopus 로고
    • Ethnic quotas and political mobilization: caste, parties, and distribution in Indian village councils
    • Dunning, T., and J. Nilekani. 2013. Ethnic quotas and political mobilization: caste, parties, and distribution in Indian village councils. American Political Science Review 107:35-56.
    • (2013) American Political Science Review , vol.107 , pp. 35-56
    • Dunning, T.1    Nilekani, J.2
  • 15
    • 50849122090 scopus 로고    scopus 로고
    • Randomization does not justify logistic regression
    • Freedman, D. A. 2008. Randomization does not justify logistic regression. Statistical Science 23(2):237-49.
    • (2008) Statistical Science , vol.23 , Issue.2 , pp. 237-249
    • Freedman, D.A.1
  • 16
    • 84864875979 scopus 로고    scopus 로고
    • Sibling comparison designs: bias from non-shared confounders and measurement error
    • Frisell, T., S. Oberg, R. Kuja-Halkola, and A. Sjolander. 2012. Sibling comparison designs: bias from non-shared confounders and measurement error. Epidemiology 23(5):713-20.
    • (2012) Epidemiology , vol.23 , Issue.5 , pp. 713-720
    • Frisell, T.1    Oberg, S.2    Kuja-Halkola, R.3    Sjolander, A.4
  • 17
    • 0004296209 scopus 로고    scopus 로고
    • 4th ed. Prentice Hall, Upper Saddle River, NJ
    • Greene, W. H. 2000. Econometric analysis, 4th ed. Prentice Hall, Upper Saddle River, NJ.
    • (2000) Econometric analysis
    • Greene, W.H.1
  • 18
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: classical confounding vs. collider-stratification bias
    • Greenland, S. 2002. Quantifying biases in causal models: classical confounding vs. collider-stratification bias. Epidemiology 14:300-306.
    • (2002) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 19
    • 44649182793 scopus 로고    scopus 로고
    • Discussion of research using propensityscore matching: comments on "A critical appraisal of propensityscore matching in the medical literature between 1996 and 2003" by Peter Austin
    • Hill, J. 2007. Discussion of research using propensityscore matching: comments on "A critical appraisal of propensityscore matching in the medical literature between 1996 and 2003" by Peter Austin. Statistics in Medicine 27(12):2055-61.
    • (2007) Statistics in Medicine , vol.27 , Issue.12 , pp. 2055-2061
    • Hill, J.1
  • 20
    • 0000989469 scopus 로고
    • Alternative methods for estimating the impact of interventions
    • eds. J. J. Heckman and B. Singer. Cambridge University Press, Cambridge, UK
    • Heckman, J., and R. Robb. 1985. Alternative methods for estimating the impact of interventions. In Longitudinal analysis of labor market data, eds. J. J. Heckman and B. Singer. Cambridge University Press, Cambridge, UK.
    • (1985) In Longitudinal analysis of labor market data
    • Heckman, J.1    Robb, R.2
  • 21
    • 0002857945 scopus 로고
    • Alternative methods for solving the problem of selection bias in evaluating the impact of treatments on outcomes
    • ed. H. Wainer. New Jersey: Lawrence Erlbaum Associates
    • Heckman, J. 1986. Alternative methods for solving the problem of selection bias in evaluating the impact of treatments on outcomes. In Drawing inferences from self-selected samples, ed. H. Wainer. New Jersey: Lawrence Erlbaum Associates.
    • (1986) In Drawing inferences from self-selected samples
    • Heckman, J.1
  • 22
    • 1842468142 scopus 로고    scopus 로고
    • Sensitivity to exogeneity assumptions in program evaluation
    • Imbens, G. W. 2003. Sensitivity to exogeneity assumptions in program evaluation. Recent Advances in Econometric Methodology 93(2):126-32.
    • (2003) Recent Advances in Econometric Methodology , vol.93 , Issue.2 , pp. 126-132
    • Imbens, G.W.1
  • 23
    • 0002690966 scopus 로고    scopus 로고
    • Identification and estimation of causal effects of multiple treatments under the conditional independence assumption
    • eds. M. Lechner and F. Pfeiffer, Heidelberg: Physica
    • Lechner, M. 2001. Identification and estimation of causal effects of multiple treatments under the conditional independence assumption. In Econometric evaluations of active labor market policies in Europe, eds. M. Lechner and F. Pfeiffer, Heidelberg: Physica.
    • (2001) In Econometric evaluations of active labor market policies in Europe
    • Lechner, M.1
  • 27
    • 0004213845 scopus 로고    scopus 로고
    • Cambridge, New York, NY
    • Pearl, J. 2000. Causality. Cambridge, New York, NY.
    • (2000) Causality
    • Pearl, J.1
  • 29
    • 80053137535 scopus 로고    scopus 로고
    • On a class of bias-amplifying variables that endanger effect estimates
    • Pearl, J. 2010. On a class of bias-amplifying variables that endanger effect estimates. Proceedings of UAI, pp. 417-24.
    • (2010) Proceedings of UAI , pp. 417-424
    • Pearl, J.1
  • 30
    • 84856039288 scopus 로고    scopus 로고
    • Invited commentary: Understanding bias amplification
    • Pearl, J. 2011. Invited commentary: Understanding bias amplification. American Journal of Epidemiology 174(11):1223-27.
    • (2011) American Journal of Epidemiology , vol.174 , Issue.11 , pp. 1223-1227
    • Pearl, J.1
  • 33
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin, D. B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66:688.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688
    • Rubin, D.B.1
  • 34
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: the role of randomization
    • Rubin, D. B. 1978. Bayesian inference for causal effects: the role of randomization. The Annals of Statistics 6(1):34-58.
    • (1978) The Annals of Statistics , vol.6 , Issue.1 , pp. 34-58
    • Rubin, D.B.1
  • 35
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: application to the tobacco litigation
    • Rubin, D. B. 2002. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology 2:169-88.
    • (2002) Health Services and Outcomes Research Methodology , vol.2 , pp. 169-188
    • Rubin, D.B.1
  • 36
    • 84869790911 scopus 로고    scopus 로고
    • Do robotic calls from credible sources influence voter turnout or vote choice? Evidence from a randomized field experiment
    • Shaw, D. R., D. P. Green, J. G. Gimpel, and A. S. Gerber. 2012. Do robotic calls from credible sources influence voter turnout or vote choice? Evidence from a randomized field experiment. Journal of Political Marketing 11(4):231-45.
    • (2012) Journal of Political Marketing , vol.11 , Issue.4 , pp. 231-245
    • Shaw, D.R.1    Green, D.P.2    Gimpel, J.G.3    Gerber, A.S.4
  • 37
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman, E. F., S. R. Cole, and R. W. Platt. 2009. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20:488-95.
    • (2009) Epidemiology , vol.20 , pp. 488-495
    • Schisterman, E.F.1    Cole, S.R.2    Platt, R.W.3
  • 39
    • 67549095644 scopus 로고    scopus 로고
    • Propensity scores and M-structures
    • Sjlander, A. 2009. Propensity scores and M-structures. Statistics in Medicine 28:141620.
    • (2009) Statistics in Medicine , vol.28
    • Sjlander, A.1
  • 40
    • 33846043680 scopus 로고    scopus 로고
    • What do randomized studies of housing mobility demonstrate? Causal inference in the face of interference
    • Sobel, M. E. 2006. What do randomized studies of housing mobility demonstrate? Causal inference in the face of interference. Journal of the American Statistical Association 101:1398-407.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1398-1407
    • Sobel, M.E.1
  • 42
    • 84989264595 scopus 로고    scopus 로고
    • Reducing bias amplification in the presence of unmeasured confounding through out-of-sample estimation strategies for the disease risk score
    • Wyss, R., M. Lunt, M. A. Brookhart, R. J. Glynn, and T. Strü rmer. 2014. Reducing bias amplification in the presence of unmeasured confounding through out-of-sample estimation strategies for the disease risk score. Journal of Causal Inference 2(2):131-46.
    • (2014) Journal of Causal Inference , vol.2 , Issue.2 , pp. 131-146
    • Wyss, R.1    Lunt, M.2    Brookhart, M.A.3    Glynn, R.J.4    Strürmer, T.5
  • 44
    • 84989224563 scopus 로고    scopus 로고
    • Unmeasured confounding for general outcomes, treatments, and confounders: bias formulas for sensitivity analysis
    • VanderWeele, T. J., and O. A. Arahc. 2011. Unmeasured confounding for general outcomes, treatments, and confounders: bias formulas for sensitivity analysis. Epidemiology 22(1):4252.
    • (2011) Epidemiology , vol.22 , Issue.1 , pp. 4252
    • VanderWeele, T.J.1    Arahc, O.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.