메뉴 건너뛰기




Volumn 39, Issue 10, 2016, Pages 668-679

PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function

Author keywords

dyskinesia; epilepsy; neuronal development; synaptic transmission; synaptopathies

Indexed keywords

CALCIUM; CELL MEMBRANE PROTEIN; INTRACELLULAR CALCIUM SENSING PROTEIN; NEUROTRANSMITTER; PROLINE RICH PROTEIN; PROLINE RICH TRANSMEMBRANE PROTEIN 2; UNCLASSIFIED DRUG; MEMBRANE PROTEIN; NERVE PROTEIN; PRRT2 PROTEIN, HUMAN; PRRT2 PROTEIN, MOUSE;

EID: 84989165796     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2016.08.005     Document Type: Review
Times cited : (75)

References (65)
  • 1
    • 25144498379 scopus 로고    scopus 로고
    • A human protein–protein interaction network: a resource for annotating the proteome
    • 1 Stelzl, U., et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122 (2005), 957–968.
    • (2005) Cell , vol.122 , pp. 957-968
    • Stelzl, U.1
  • 2
    • 82255186531 scopus 로고    scopus 로고
    • Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia
    • 2 Chen, W.J., et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat. Genet. 43 (2011), 1252–1255.
    • (2011) Nat. Genet. , vol.43 , pp. 1252-1255
    • Chen, W.J.1
  • 3
    • 83755205987 scopus 로고    scopus 로고
    • Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias
    • 3 Wang, J.L., et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134 (2011), 3493–3501.
    • (2011) Brain , vol.134 , pp. 3493-3501
    • Wang, J.L.1
  • 4
    • 33750592912 scopus 로고    scopus 로고
    • Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions
    • 4 Kato, N., et al. Paroxysmal kinesigenic choreoathetosis: from first discovery in 1892 to genetic linkage with benign familial infantile convulsions. Epilepsy Res. 70:Suppl 1 (2006), S174–S184.
    • (2006) Epilepsy Res. , vol.70 , pp. S174-S184
    • Kato, N.1
  • 5
    • 84870805787 scopus 로고    scopus 로고
    • Genetics: expanding the spectrum of neurological disorders associated with PRRT2 mutations
    • 5 Wood, H., Genetics: expanding the spectrum of neurological disorders associated with PRRT2 mutations. Nat. Rev. Neurol., 8, 2012, 657.
    • (2012) Nat. Rev. Neurol. , vol.8 , pp. 657
    • Wood, H.1
  • 6
    • 84874766771 scopus 로고    scopus 로고
    • Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy
    • 6 Heron, S.E., Dibbens, L.M., Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J. Med. Genet. 50 (2013), 133–139.
    • (2013) J. Med. Genet. , vol.50 , pp. 133-139
    • Heron, S.E.1    Dibbens, L.M.2
  • 7
    • 84951046758 scopus 로고    scopus 로고
    • The evolving spectrum of PRRT2-associated paroxysmal diseases
    • 7 Ebrahimi-Fakhari, D., et al. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 138 (2015), 3476–3495.
    • (2015) Brain , vol.138 , pp. 3476-3495
    • Ebrahimi-Fakhari, D.1
  • 8
    • 84928405610 scopus 로고    scopus 로고
    • PRRT2 mutant leads to dysfunction of glutamate signaling
    • 8 Li, M., et al. PRRT2 mutant leads to dysfunction of glutamate signaling. Int. J. Mol. Sci. 16 (2015), 9134–9151.
    • (2015) Int. J. Mol. Sci. , vol.16 , pp. 9134-9151
    • Li, M.1
  • 9
    • 84922391817 scopus 로고    scopus 로고
    • Child Neurology: PRRT2-associated movement disorders and differential diagnoses
    • 9 Ebrahimi-Fakhari, D., et al. Child Neurology: PRRT2-associated movement disorders and differential diagnoses. Neurology 83 (2014), 1680–1683.
    • (2014) Neurology , vol.83 , pp. 1680-1683
    • Ebrahimi-Fakhari, D.1
  • 10
    • 84964789282 scopus 로고    scopus 로고
    • A novel topology of proline-rich transmembrane protein 2 (PRRT2): hints for an intracellular function at the synapse
    • 10 Rossi, P., et al. A novel topology of proline-rich transmembrane protein 2 (PRRT2): hints for an intracellular function at the synapse. J. Biol. Chem. 291 (2016), 6111–6123.
    • (2016) J. Biol. Chem. , vol.291 , pp. 6111-6123
    • Rossi, P.1
  • 11
    • 84963563044 scopus 로고    scopus 로고
    • PRRT2 is a key component of the Ca(2 + )-dependent neurotransmitter release machinery
    • 11 Valente, P., et al. PRRT2 is a key component of the Ca(2 + )-dependent neurotransmitter release machinery. Cell Rep. 15 (2016), 117–131.
    • (2016) Cell Rep. , vol.15 , pp. 117-131
    • Valente, P.1
  • 12
    • 84989211824 scopus 로고    scopus 로고
    • Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene
    • 12 Liu, X.R., et al. Paroxysmal hypnogenic dyskinesia is associated with mutations in the PRRT2 gene. Neurol. Genet., 2, 2016, e66.
    • (2016) Neurol. Genet. , vol.2 , pp. e66
    • Liu, X.R.1
  • 13
    • 84982060486 scopus 로고    scopus 로고
    • PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects
    • Published online May 9, 2016.
    • 13 Liu, Y.T., et al. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget, 2016 Published online May 9, 2016. http://dx.doi.org/10.18632/oncotarget.9258.
    • (2016) Oncotarget
    • Liu, Y.T.1
  • 14
    • 84951010533 scopus 로고    scopus 로고
    • The clinical and genetic heterogeneity of paroxysmal dyskinesias
    • 14 Gardiner, A.R., et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 138 (2015), 3567–3580.
    • (2015) Brain , vol.138 , pp. 3567-3580
    • Gardiner, A.R.1
  • 15
    • 84868088726 scopus 로고    scopus 로고
    • PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine
    • 15 Cloarec, R., et al. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology 79 (2012), 2097–2103.
    • (2012) Neurology , vol.79 , pp. 2097-2103
    • Cloarec, R.1
  • 16
    • 84864762353 scopus 로고    scopus 로고
    • PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort
    • 16 Lee, Y.C., et al. PRRT2 mutations in paroxysmal kinesigenic dyskinesia with infantile convulsions in a Taiwanese cohort. PLoS One, 7, 2012, e38543.
    • (2012) PLoS One , vol.7 , pp. e38543
    • Lee, Y.C.1
  • 17
    • 84856144700 scopus 로고    scopus 로고
    • Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions
    • 17 Lee, H.Y., et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 1 (2012), 2–12.
    • (2012) Cell Rep. , vol.1 , pp. 2-12
    • Lee, H.Y.1
  • 18
    • 84861640003 scopus 로고    scopus 로고
    • Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions
    • 18 Ono, S., et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J. Hum. Genet. 57 (2012), 338–341.
    • (2012) J. Hum. Genet. , vol.57 , pp. 338-341
    • Ono, S.1
  • 19
    • 84877672164 scopus 로고    scopus 로고
    • PRRT2 mutations and paroxysmal disorders
    • 19 Meneret, A., et al. PRRT2 mutations and paroxysmal disorders. Eur. J. Neurol. 20 (2013), 872–878.
    • (2013) Eur. J. Neurol. , vol.20 , pp. 872-878
    • Meneret, A.1
  • 20
    • 84871292496 scopus 로고    scopus 로고
    • PRRT2 mutations cause hemiplegic migraine
    • 20 Riant, F., et al. PRRT2 mutations cause hemiplegic migraine. Neurology 79 (2012), 2122–2124.
    • (2012) Neurology , vol.79 , pp. 2122-2124
    • Riant, F.1
  • 21
    • 84884335611 scopus 로고    scopus 로고
    • PRRT2-related disorders: further PKD and ICCA cases and review of the literature
    • 21 Becker, F., et al. PRRT2-related disorders: further PKD and ICCA cases and review of the literature. J. Neurol. 260 (2013), 1234–1244.
    • (2013) J. Neurol. , vol.260 , pp. 1234-1244
    • Becker, F.1
  • 22
    • 84863643572 scopus 로고    scopus 로고
    • Genetics of Parkinson disease and other movement disorders
    • 22 Kumar, K.R., et al. Genetics of Parkinson disease and other movement disorders. Curr. Opin. Neurol. 25 (2012), 466–474.
    • (2012) Curr. Opin. Neurol. , vol.25 , pp. 466-474
    • Kumar, K.R.1
  • 23
    • 84903161708 scopus 로고    scopus 로고
    • Unusual variability of PRRT2 linked phenotypes within a family
    • 23 Brueckner, F., et al. Unusual variability of PRRT2 linked phenotypes within a family. Eur. J. Paediatr. Neurol. 18 (2014), 540–542.
    • (2014) Eur. J. Paediatr. Neurol. , vol.18 , pp. 540-542
    • Brueckner, F.1
  • 24
    • 84928386651 scopus 로고    scopus 로고
    • Severe phenotypic spectrum of biallelic mutations in PRRT2 gene
    • 24 Delcourt, M., et al. Severe phenotypic spectrum of biallelic mutations in PRRT2 gene. J. Neurol. Neurosurg. Psychiatry 86 (2015), 782–785.
    • (2015) J. Neurol. Neurosurg. Psychiatry , vol.86 , pp. 782-785
    • Delcourt, M.1
  • 25
    • 84870592909 scopus 로고    scopus 로고
    • Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences
    • 25 Labate, A., et al. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia 53 (2012), e196–e199.
    • (2012) Epilepsia , vol.53 , pp. e196-e199
    • Labate, A.1
  • 26
    • 77953704493 scopus 로고    scopus 로고
    • Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size
    • 26 Shinawi, M., et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J. Med. Genet. 47 (2010), 332–341.
    • (2010) J. Med. Genet. , vol.47 , pp. 332-341
    • Shinawi, M.1
  • 27
    • 39049163023 scopus 로고    scopus 로고
    • Association between microdeletion and microduplication at 16p11.2 and autism
    • 27 Weiss, L.A., et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358 (2008), 667–675.
    • (2008) N. Engl. J. Med. , vol.358 , pp. 667-675
    • Weiss, L.A.1
  • 28
    • 84857419834 scopus 로고    scopus 로고
    • The dispanins: a novel gene family of ancient origin that contains 14 human members
    • 28 Sallman Almen, M., et al. The dispanins: a novel gene family of ancient origin that contains 14 human members. PLoS One, 7, 2012, e31961.
    • (2012) PLoS One , vol.7 , pp. e31961
    • Sallman Almen, M.1
  • 29
    • 84855827661 scopus 로고    scopus 로고
    • PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome
    • 29 Heron, S.E., et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am. J. Hum. Genet. 90 (2012), 152–160.
    • (2012) Am. J. Hum. Genet. , vol.90 , pp. 152-160
    • Heron, S.E.1
  • 30
    • 80053572217 scopus 로고    scopus 로고
    • Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies
    • 30 Trabzuni, D., et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J. Neurochem. 119 (2011), 275–282.
    • (2011) J. Neurochem. , vol.119 , pp. 275-282
    • Trabzuni, D.1
  • 31
    • 84947578313 scopus 로고    scopus 로고
    • REST-governed gene expression profiling in a neuronal cell model reveals novel direct and indirect processes of repression and up-regulation
    • 31 Garcia-Manteiga, J.M., et al. REST-governed gene expression profiling in a neuronal cell model reveals novel direct and indirect processes of repression and up-regulation. Front. Cell. Neurosci., 9, 2015, 438.
    • (2015) Front. Cell. Neurosci. , vol.9 , pp. 438
    • Garcia-Manteiga, J.M.1
  • 33
    • 84871327554 scopus 로고    scopus 로고
    • PRRT2 mutation causes benign familial infantile convulsions
    • 33 de Vries, B., et al. PRRT2 mutation causes benign familial infantile convulsions. Neurology 79 (2012), 2154–2155.
    • (2012) Neurology , vol.79 , pp. 2154-2155
    • de Vries, B.1
  • 34
    • 84888304409 scopus 로고    scopus 로고
    • Altered intrinsic brain activity in patients with paroxysmal kinesigenic dyskinesia by PRRT2 mutation: altered brain activity by PRRT2 mutation
    • 34 Luo, C., et al. Altered intrinsic brain activity in patients with paroxysmal kinesigenic dyskinesia by PRRT2 mutation: altered brain activity by PRRT2 mutation. Neurol. Sci. 34 (2013), 1925–1931.
    • (2013) Neurol. Sci. , vol.34 , pp. 1925-1931
    • Luo, C.1
  • 35
    • 84876809468 scopus 로고    scopus 로고
    • Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses
    • 35 Boyken, J., et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78 (2013), 285–297.
    • (2013) Neuron , vol.78 , pp. 285-297
    • Boyken, J.1
  • 36
    • 84907989908 scopus 로고    scopus 로고
    • Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain
    • 36 Schwenk, J., et al. Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron 84 (2014), 41–54.
    • (2014) Neuron , vol.84 , pp. 41-54
    • Schwenk, J.1
  • 37
    • 84863100938 scopus 로고    scopus 로고
    • Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L
    • 37 Shanks, N.F., et al. Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. Cell Rep. 1 (2012), 590–598.
    • (2012) Cell Rep. , vol.1 , pp. 590-598
    • Shanks, N.F.1
  • 38
    • 0028061861 scopus 로고
    • Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse
    • 38 Geppert, M., et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79 (1994), 717–727.
    • (1994) Cell , vol.79 , pp. 717-727
    • Geppert, M.1
  • 39
    • 33845900184 scopus 로고    scopus 로고
    • Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses
    • 39 Pang, Z.P., et al. Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J. Neurosci. 26 (2006), 13493–13504.
    • (2006) J. Neurosci. , vol.26 , pp. 13493-13504
    • Pang, Z.P.1
  • 40
    • 36749078085 scopus 로고    scopus 로고
    • A dual-Ca2 + -sensor model for neurotransmitter release in a central synapse
    • 40 Sun, J., et al. A dual-Ca2 + -sensor model for neurotransmitter release in a central synapse. Nature 450 (2007), 676–682.
    • (2007) Nature , vol.450 , pp. 676-682
    • Sun, J.1
  • 41
    • 34447648009 scopus 로고    scopus 로고
    • Synaptotagmin I and II are present in distinct subsets of central synapses
    • 41 Fox, M.A., Sanes, J.R., Synaptotagmin I and II are present in distinct subsets of central synapses. J. Comp. Neurol. 503 (2007), 280–296.
    • (2007) J. Comp. Neurol. , vol.503 , pp. 280-296
    • Fox, M.A.1    Sanes, J.R.2
  • 42
    • 55749107124 scopus 로고    scopus 로고
    • Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses
    • 42 Kerr, A.M., et al. Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 15581–15586.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 15581-15586
    • Kerr, A.M.1
  • 43
    • 84924359832 scopus 로고    scopus 로고
    • Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis
    • 43 Shen, Y., et al. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 2935–2941.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 2935-2941
    • Shen, Y.1
  • 44
    • 78651509693 scopus 로고    scopus 로고
    • RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction
    • 44 Kaeser, P.S., et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144 (2011), 282–295.
    • (2011) Cell , vol.144 , pp. 282-295
    • Kaeser, P.S.1
  • 45
    • 0037171801 scopus 로고    scopus 로고
    • RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2 + ) channels
    • 45 Hibino, H., et al. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2 + ) channels. Neuron 34 (2002), 411–423.
    • (2002) Neuron , vol.34 , pp. 411-423
    • Hibino, H.1
  • 46
    • 52049098700 scopus 로고    scopus 로고
    • Calcium channel regulation and presynaptic plasticity
    • 46 Catterall, W.A., Few, A.P., Calcium channel regulation and presynaptic plasticity. Neuron 59 (2008), 882–901.
    • (2008) Neuron , vol.59 , pp. 882-901
    • Catterall, W.A.1    Few, A.P.2
  • 47
    • 77955286449 scopus 로고    scopus 로고
    • Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons
    • 47 Condliffe, S.B., et al. Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J. Biol. Chem. 285 (2010), 24968–24976.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24968-24976
    • Condliffe, S.B.1
  • 48
    • 84925949226 scopus 로고    scopus 로고
    • Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability
    • 48 Rohena, L., et al. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis., 1, 2013, e26314.
    • (2013) Rare Dis. , vol.1 , pp. e26314
    • Rohena, L.1
  • 49
    • 2642536944 scopus 로고    scopus 로고
    • Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma
    • 49 Zhang, Y., et al. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma. J. Neurosci. 24 (2004), 5239–5248.
    • (2004) J. Neurosci. , vol.24 , pp. 5239-5248
    • Zhang, Y.1
  • 50
    • 84896369293 scopus 로고    scopus 로고
    • Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs
    • 50 Corradini, I., et al. Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs. Cereb. Cortex 24 (2014), 364–376.
    • (2014) Cereb. Cortex , vol.24 , pp. 364-376
    • Corradini, I.1
  • 51
    • 0029834871 scopus 로고    scopus 로고
    • Exquisite sensitivity of paroxysmal kinesigenic choreoathetosis to carbamazepine
    • 51 Wein, T., et al. Exquisite sensitivity of paroxysmal kinesigenic choreoathetosis to carbamazepine. Neurology 47 (1996), 1104–1106.
    • (1996) Neurology , vol.47 , pp. 1104-1106
    • Wein, T.1
  • 52
    • 84982854605 scopus 로고    scopus 로고
    • Urine-derived induced pluripotent stem cells as a modeling tool for paroxysmal kinesigenic dyskinesia
    • 52 Zhang, S.Z., et al. Urine-derived induced pluripotent stem cells as a modeling tool for paroxysmal kinesigenic dyskinesia. Biol. Open 4 (2015), 1744–1752.
    • (2015) Biol. Open , vol.4 , pp. 1744-1752
    • Zhang, S.Z.1
  • 53
    • 84982295591 scopus 로고    scopus 로고
    • Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells
    • Published online July 18, 2016.
    • 53 Li, C., et al. Aberrant transcriptional networks in step-wise neurogenesis of paroxysmal kinesigenic dyskinesia-induced pluripotent stem cells. Oncotarget, 2016 Published online July 18, 2016. http://dx.doi.org/10.18632/oncotarget.10680.
    • (2016) Oncotarget
    • Li, C.1
  • 54
    • 84873142737 scopus 로고    scopus 로고
    • Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy
    • 54 Casillas-Espinosa, P.M., et al. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53:Suppl 9 (2012), 41–58.
    • (2012) Epilepsia , vol.53 , pp. 41-58
    • Casillas-Espinosa, P.M.1
  • 55
    • 84923697997 scopus 로고    scopus 로고
    • Molecular mechanisms of epilepsy
    • 55 Staley, K., Molecular mechanisms of epilepsy. Nat. Neurosci. 18 (2015), 367–372.
    • (2015) Nat. Neurosci. , vol.18 , pp. 367-372
    • Staley, K.1
  • 56
    • 84867295592 scopus 로고    scopus 로고
    • Molecular machines governing exocytosis of synaptic vesicles
    • 56 Jahn, R., Fasshauer, D., Molecular machines governing exocytosis of synaptic vesicles. Nature 490 (2012), 201–207.
    • (2012) Nature , vol.490 , pp. 201-207
    • Jahn, R.1    Fasshauer, D.2
  • 57
    • 84886998869 scopus 로고    scopus 로고
    • Neurotransmitter release: the last millisecond in the life of a synaptic vesicle
    • 57 Sudhof, T.C., Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80 (2013), 675–690.
    • (2013) Neuron , vol.80 , pp. 675-690
    • Sudhof, T.C.1
  • 58
    • 84937394649 scopus 로고    scopus 로고
    • The synaptic vesicle release machinery
    • 58 Rizo, J., Xu, J., The synaptic vesicle release machinery. Annu. Rev. Biophys. 44 (2015), 339–367.
    • (2015) Annu. Rev. Biophys. , vol.44 , pp. 339-367
    • Rizo, J.1    Xu, J.2
  • 59
    • 84975487872 scopus 로고    scopus 로고
    • Role of bassoon and piccolo in assembly and molecular organization of the active zone
    • 59 Gundelfinger, E.D., et al. Role of bassoon and piccolo in assembly and molecular organization of the active zone. Front. Synaptic Neurosci., 7, 2015, 19.
    • (2015) Front. Synaptic Neurosci. , vol.7 , pp. 19
    • Gundelfinger, E.D.1
  • 60
    • 77957896478 scopus 로고    scopus 로고
    • Episodic neurological channelopathies
    • 60 Ryan, D.P., Ptacek, L.J., Episodic neurological channelopathies. Neuron 68 (2010), 282–292.
    • (2010) Neuron , vol.68 , pp. 282-292
    • Ryan, D.P.1    Ptacek, L.J.2
  • 61
    • 33750805030 scopus 로고    scopus 로고
    • Molecular anatomy of a trafficking organelle
    • 61 Takamori, S., et al. Molecular anatomy of a trafficking organelle. Cell 127 (2006), 831–846.
    • (2006) Cell , vol.127 , pp. 831-846
    • Takamori, S.1
  • 62
    • 78650680152 scopus 로고    scopus 로고
    • Characterization of the proteome, diseases and evolution of the human postsynaptic density
    • 62 Bayes, A., et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat. Neurosci. 14 (2011), 19–21.
    • (2011) Nat. Neurosci. , vol.14 , pp. 19-21
    • Bayes, A.1
  • 63
    • 0142184100 scopus 로고    scopus 로고
    • Huntington's disease: a synaptopathy?
    • 63 Li, J.Y., et al. Huntington's disease: a synaptopathy?. Trends Mol. Med. 9 (2003), 414–420.
    • (2003) Trends Mol. Med. , vol.9 , pp. 414-420
    • Li, J.Y.1
  • 64
    • 84863434758 scopus 로고    scopus 로고
    • Synaptopathies: diseases of the synaptome
    • 64 Grant, S.G., Synaptopathies: diseases of the synaptome. Curr. Opin. Neurobiol. 22 (2012), 522–529.
    • (2012) Curr. Opin. Neurobiol. , vol.22 , pp. 522-529
    • Grant, S.G.1
  • 65
    • 66549107350 scopus 로고    scopus 로고
    • Opposite changes in glutamatergic and GABAergic transmission underlie the diffuse hyperexcitability of synapsin I-deficient cortical networks
    • 65 Chiappalone, M., et al. Opposite changes in glutamatergic and GABAergic transmission underlie the diffuse hyperexcitability of synapsin I-deficient cortical networks. Cereb. Cortex 19 (2009), 1422–1439.
    • (2009) Cereb. Cortex , vol.19 , pp. 1422-1439
    • Chiappalone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.