-
1
-
-
33750383209
-
An algorithm for designing overcomplete dictionaries for sparse representation
-
Aharon, M., Elad, M., & Bruckstein, A. (2006). An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311-4322.
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
2
-
-
84988965142
-
-
arXiv(arXiv: 1603.07834v1)
-
Akintayo, A., Lee, N., Chawla, V., Mullaney, M., Marett, C., Singh, A.,… Sarkar, S. (2016, March). An end-to-end convolutional selective autoencoder approach to soybean cyst nematode eggs detection. arXiv(arXiv: 1603.07834v1), 1-10.
-
(2016)
An End-To-End Convolutional Selective Autoencoder Approach to Soybean Cyst Nematode Eggs Detection
, pp. 1-10
-
-
Akintayo, A.1
Lee, N.2
Chawla, V.3
Mullaney, M.4
Marett, C.5
Singh, A.6
Sarkar, S.7
-
3
-
-
85015933880
-
-
arXiv(arXiv: 1603.07839v1)
-
Akintayo, A., Lore, K. G., Sarkar, S., & Sarkar, S. (2016, March). Early detection of combustion instabilities using convolutional selective autoencoders on hi-speed video. arXiv(arXiv: 1603.07839v1), 1-10.
-
(2016)
Early Detection of Combustion Instabilities Using Convolutional Selective Autoencoders on Hi-Speed Video
, pp. 1-10
-
-
Akintayo, A.1
Lore, K.G.2
Sarkar, S.3
Sarkar, S.4
-
5
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
Berger, A. L., Pietra, S. A. D., & Pietra, V. J. D. (1996). A maximum entropy approach to natural language processing. Association for Computational Linguistics, 22(1), 1-36.
-
(1996)
Association for Computational Linguistics
, vol.22
, Issue.1
, pp. 1-36
-
-
Berger, A.L.1
Pietra, S.A.D.2
Pietra, V.J.D.3
-
6
-
-
84988936242
-
-
Proceedings of the Python for Scientific Computing Conference (SciPy). (Oral Presentation)
-
Bergstra, J., Breulex, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,… Bengio, Y. (2010, June). Theano: a cpu and gpu math expression compiler. Proceedings of the Python for Scientific Computing Conference (SciPy). (Oral Presentation)
-
(2010)
Theano: A Cpu and Gpu Math Expression Compiler
-
-
Bergstra, J.1
Breulex, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Bengio, Y.7
-
7
-
-
12044259644
-
The proper orthogonal decomposition in the analysis of turbulent flows
-
Berkooz, G., Holmes, P., & Lumley, J. L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25(1), 539-575. doi: 10.1146/annurev.fl.25.010193.002543
-
(1993)
Annual Review of Fluid Mechanics
, vol.25
, Issue.1
, pp. 539-575
-
-
Berkooz, G.1
Holmes, P.2
Lumley, J.L.3
-
10
-
-
84883162364
-
Learning graphical model parameters with approximate marginal inference
-
Domke, J. (2013). Learning graphical model parameters with approximate marginal inference. IEEE Transaction on Pattern Analysis and Machine Intelligence, 35(10), 2454-2467.
-
(2013)
IEEE Transaction on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.10
, pp. 2454-2467
-
-
Domke, J.1
-
11
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J., Hazan, E., & Singer, Y. (2011, July). Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12, 2121-2159.
-
(2011)
JMLR
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
13
-
-
84922505124
-
-
exdb
-
Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning hierarchical features for scene labeling. exdb, 1-15.
-
(2013)
Learning Hierarchical Features for Scene Labeling
, pp. 1-15
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
14
-
-
10044273311
-
Using multiple graphics cards as a general purpose parallel computer: Applications to compute vision. International Conference on Pattern Recognition
-
Fung, J., & Mann, S. (2004, August). Using multiple graphics cards as a general purpose parallel computer: Applications to compute vision. International Conference on Pattern Recognition, ICPR, 1, 805-808.
-
(2004)
ICPR
, vol.1
, pp. 805-808
-
-
Fung, J.1
Mann, S.2
-
16
-
-
77957959635
-
Framewise phoneme classification with bidirectional lstm and other neural network architectures
-
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. IJCNN, 1-8.
-
(2005)
IJCNN
, pp. 1-8
-
-
Graves, A.1
Schmidhuber, J.2
-
17
-
-
84867720412
-
-
arXiv(1207.0580v1)
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012, July). Improving neural networks by preventing co-adaptation of feature detectors. arXiv(1207.0580v1), 1-18.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
, pp. 1-18
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
18
-
-
0020968497
-
Coherent structures-reality and myth
-
Hussain, A. K. M. F. (1983). Coherent structures-reality and myth. Physics of Fluids, 26(10), 2816-2850.
-
(1983)
Physics of Fluids
, vol.26
, Issue.10
, pp. 2816-2850
-
-
Hussain, A.K.M.F.1
-
20
-
-
84876231242
-
-
NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada
-
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada.
-
(2012)
Imagenet Classification with Deep Convolutional Neural Networks
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
84988965119
-
Strudtured labeling to facilitate concept evolution in machine learning
-
Kulesza, T., Amershi, S., Caruana, R., Fisher, D., & Charles, D. (2014, April). Strudtured labeling to facilitate concept evolution in machine learning. ACM, 1-10.
-
(2014)
ACM
, pp. 1-10
-
-
Kulesza, T.1
Amershi, S.2
Caruana, R.3
Fisher, D.4
Charles, D.5
-
23
-
-
0142192295
-
-
International Conference on Machine Learning
-
Lafferty, J., McCallum, A., & Pereira, F. C. (2001, June). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. International Conference on Machine Learning, 282-289.
-
(2001)
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.3
-
25
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998, November). Gradient-based learning applied to document recognition. Proc of IEEE, 1-46.
-
(1998)
Proc of IEEE
, pp. 1-46
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
26
-
-
33847756386
-
Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption
-
Li, H., Zhou, X., Jeffries, J. B., & Hanson, R. K. (2007, February). Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption. AIAA, 45(2), 1-9.
-
(2007)
AIAA
, vol.45
, Issue.2
, pp. 1-9
-
-
Li, H.1
Zhou, X.2
Jeffries, J.B.3
Hanson, R.K.4
-
27
-
-
84979055652
-
An unsupervised spatiotemporal graphical modeling approach to anomaly detection in cps
-
Liu, C., Ghosal, S., Jiang, Z., & Sarkar, S. (2016). An unsupervised spatiotemporal graphical modeling approach to anomaly detection in cps. Proceedings of the International Conference on Cyber-physical Systems (ICCPS), 1-10.
-
(2016)
Proceedings of the International Conference on Cyber-Physical Systems (ICCPS)
, pp. 1-10
-
-
Liu, C.1
Ghosal, S.2
Jiang, Z.3
Sarkar, S.4
-
28
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. CVPR, 3431-3440.
-
(2015)
CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84991807872
-
-
Elsevier Pattern Recognition(doi: 10.1016/j.patcog.2016.06.008)
-
Lore, K. G., Akintayo, A., & Sarkar, S. (2016, June). Llnet: A deep autoencoder approach to natural lowlight image enhancement. Elsevier Pattern Recognition(doi: 10.1016/j.patcog.2016.06.008), 1-13.
-
(2016)
Llnet: A Deep Autoencoder Approach to Natural Lowlight Image Enhancement
, pp. 1-13
-
-
Lore, K.G.1
Akintayo, A.2
Sarkar, S.3
-
30
-
-
79959353548
-
-
T. H. et al. (Ed.), Springer-Verlag Berlin Heidelberg
-
Masci, J., Meier, U., Ciresan, D., & Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. In T. H. et al. (Ed.), (p. 52-59). Springer-Verlag Berlin Heidelberg.
-
(2011)
Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Ciresan, D.3
Schmidhuber, J.4
-
32
-
-
0024610919
-
A tutorial on hidden markov models and selected applications in speech proccessing
-
Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech proccessing. Proceedings of the IEEE, 77(2), 257-286.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
33
-
-
85029772371
-
Early detection of combustion instability by neural-symbolic analysis on hi-speed video
-
Montreal, Canada
-
Sarkar, S., Lore, K. G., & Sarkar, S. (2015, December). Early detection of combustion instability by neural-symbolic analysis on hi-speed video. In Workshop on cognitive computation: Integrating neural and symbolic approaches (coco@nips 2015). Montreal, Canada.
-
(2015)
Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches (Coco@Nips 2015)
-
-
Sarkar, S.1
Lore, K.G.2
Sarkar, S.3
-
34
-
-
85016118286
-
Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis
-
Sarkar, S., Lore, K. G., Sarkar, S., Ramaman, V., Chakravarthy, S. R., Phoha, S., & Ray, A. (2015). Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis. Annual Conference of the Prognostics and Health Management Management Society, 1-10.
-
(2015)
Annual Conference of the Prognostics and Health Management Management Society
, pp. 1-10
-
-
Sarkar, S.1
Lore, K.G.2
Sarkar, S.3
Ramaman, V.4
Chakravarthy, S.R.5
Phoha, S.6
Ray, A.7
-
35
-
-
84988946417
-
-
Intenational Conference on Artificial Neural Networks, ICANN
-
Scherer, D., Muller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. Intenational Conference on Artificial Neural Networks, ICANN, 1-10.
-
(2010)
Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
, pp. 1-10
-
-
Scherer, D.1
Muller, A.2
Behnke, S.3
-
36
-
-
77957153107
-
Dynamic mode decomposition of numerical and experimental data
-
Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5-28. doi: 10.1017/S0022112010001217
-
(2010)
Journal of Fluid Mechanics
, vol.656
, pp. 5-28
-
-
Schmid, P.J.1
-
37
-
-
84988916162
-
Very deep multilingual convolutional neural networks for lvcsr
-
Sercu, T., Puhrsch, C., Kingsbury, B., & LeCun, Y. (2016, September). Very deep multilingual convolutional neural networks for lvcsr. ICAPPS, 1–5.
-
(2016)
ICAPPS
, pp. 1-5
-
-
Sercu, T.1
Puhrsch, C.2
Kingsbury, B.3
Lecun, Y.4
-
39
-
-
84897510162
-
-
International Conference on Machine Learning, JMLR
-
Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. International Conference on Machine Learning, JMLR, 28.
-
(2013)
On the Importance of Initialization and Momentum in Deep Learning
, pp. 28
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
40
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,… Rabinovich, A. (2015). Going deeper with convolutions. CVPR, 9.
-
(2015)
CVPR
, pp. 9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
-
41
-
-
79952512265
-
How to grow a mind: Statistics, structure, and abstraction
-
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279-1285.
-
(2011)
Science
, vol.331
, pp. 1279-1285
-
-
Tenenbaum, J.B.1
Kemp, C.2
Griffiths, T.L.3
Goodman, N.D.4
-
42
-
-
84988964340
-
-
Retrieved 03, from
-
Thoma, M. (2016, February). Lasagne for python newbies. Retrieved 03, from https: //martin thoma.com/lasagne for python newbies/
-
(2016)
Lasagne for Python Newbies
-
-
Thoma, M.1
|