메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1574-1581

Learning real-time mrf inference for image denoising

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; GRADIENT METHODS; IMAGE SEGMENTATION; INFERENCE ENGINES; MAGNETORHEOLOGICAL FLUIDS; MARKOV PROCESSES; STRUCTURAL FRAMES;

EID: 70450208956     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2009.5206811     Document Type: Conference Paper
Times cited : (29)

References (29)
  • 2
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag. On the statistical analysis of dirty pictures. J. Royal Stat. Soc. B, 48(3): 259-302, 1986.
    • (1986) J. Royal Stat. Soc. B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 3
    • 0035509961 scopus 로고    scopus 로고
    • Fast approximate energy minimization via graph cuts
    • Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE TPAMI, 23(11): 1222-1239, 2001.
    • (2001) IEEE TPAMI , vol.23 , Issue.11 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 4
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • A. Buades, B. Coll, and J.M. Morel. A Non-Local Algorithm for Image Denoising. CVPR, 2005.
    • (2005) CVPR
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 5
    • 0035363218 scopus 로고    scopus 로고
    • Active appearance models
    • T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. TPAMI, 23(6): 681-685, 2001.
    • (2001) TPAMI , vol.23 , Issue.6 , pp. 681-685
    • Cootes, T.F.1    Edwards, G.J.2    Taylor, C.J.3
  • 6
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Img. Proc., 16(8): 2080-2095, 2007.
    • (2007) IEEE Trans. Img. Proc. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 7
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE T Img. Proc., 15(12), 2006.
    • IEEE T Img. Proc. , vol.15 , Issue.12 , pp. 2006
    • Elad, M.1    Aharon, M.2
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 14(8): 1771- 1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 11
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert. Discriminative random fields: a discriminative framework for contextual interaction in classification. ICCV, 2003.
    • (2003) ICCV
    • Kumar, S.1    Hebert, M.2
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. ICML 2001.
    • (2001) ICML
    • Lafferty, J.D.1    Mccallum, A.2    Pereira, F.C.N.3
  • 13
    • 84862617580 scopus 로고    scopus 로고
    • Loss functions for discriminative training of energy-based models
    • Y. LeCun and F.J. Huang. Loss functions for discriminative training of energy-based models. AIStats, 3, 2005.
    • (2005) AIStats , vol.3
    • Lecun, Y.1    Huang, F.J.2
  • 14
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms. ICCV 2001, 2: 416- 425.
    • ICCV 2001 , vol.2 , pp. 416-425
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 15
    • 31344451735 scopus 로고    scopus 로고
    • Estimating the probability of the presence of a signal of interest in multiresolution singleand multiband image denoising
    • A. Pizurica and W. Philips. Estimating the Probability of the Presence of a Signal of Interest in Multiresolution Singleand Multiband Image Denoising. IEEE Trans. Img. Proc., 15(3): 654-665, 2006.
    • (2006) IEEE Trans. Img. Proc. , vol.15 , Issue.3 , pp. 654-665
    • Pizurica, A.1    Philips, W.2
  • 16
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • J. Portilla, V. Strela, MJ Wainwright, and EP Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Img. Proc., 12(11): 1338-1351, 2003.
    • (2003) IEEE Trans. Img. Proc. , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.J.3    Simoncelli, E.P.4
  • 17
    • 84926736518 scopus 로고
    • Some generalized order-disorder transitions
    • RB Potts. Some generalized order-disorder transitions. Proc. Camb. Phil. Soc, 48: 106-109, 1952.
    • (1952) Proc. Camb. Phil. Soc , vol.48 , pp. 106-109
    • Potts, R.B.1
  • 18
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: A framework for learning image priors
    • S. Roth and MJ Black. Fields of Experts: a framework for learning image priors. CVPR 2005.
    • CVPR 2005
    • Roth, S.1    Black, M.J.2
  • 19
    • 0042850432 scopus 로고    scopus 로고
    • Stereo matching using belief propagation
    • J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief propagation. TPAMI, 25: 787-800, 2003.
    • (2003) TPAMI , vol.25 , pp. 787-800
    • Sun, J.1    Zheng, N.N.2    Shum, H.Y.3
  • 20
    • 0344983321 scopus 로고    scopus 로고
    • Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters
    • MF Tappen and WT Freeman. Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. ICCV, pages 900-906, 2003.
    • (2003) ICCV , pp. 900-906
    • Tappen, M.F.1    Freeman, W.T.2
  • 21
    • 34948890052 scopus 로고    scopus 로고
    • Utilizing variational optimization to learn Markov random fields
    • M.F. Tappen and FL Orlando. Utilizing Variational Optimization to Learn Markov Random Fields. CVPR, pages 1- 8, 2007.
    • (2007) CVPR , pp. 1-8
    • Tappen, M.F.1    Orlando, F.L.2
  • 22
    • 84864071180 scopus 로고    scopus 로고
    • Structured prediction via the extragradient method
    • B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured Prediction via the Extragradient Method. NIPS, 18: 1345, 2006.
    • (2006) NIPS , vol.18 , pp. 1345
    • Taskar, B.1    Lacoste-Julien, S.2    Jordan, M.3
  • 23
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • P.D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. of AI Research, 2: 369-409, 1995.
    • (1995) J. of ai Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 24
    • 33748685798 scopus 로고    scopus 로고
    • Estimating the "wrong" graphical model: Benefits in the computation-limited setting
    • M. J. Wainwright. Estimating the "wrong" graphical model: Benefits in the computation-limited setting. J. Mach. Learn. Res., 7: 1829-1859, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1829-1859
    • Wainwright, M.J.1
  • 26
    • 52249100995 scopus 로고    scopus 로고
    • SATzilla: Portfolio-based algorithm selection for SAT
    • L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Selection for SAT. J. of AI Research, 32: 565-606, 2008.
    • (2008) J. of ai Research , vol.32 , pp. 565-606
    • Xu, L.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 28
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.
    • Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-Chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. Medical Imaging, IEEE Transactions on, 27(11): 1668-1681, 2008.
    • (2008) Medical Imaging, IEEE Transactions on , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5
  • 29
    • 34548407826 scopus 로고    scopus 로고
    • Shape regression machine
    • S.K. Zhou and D. Comaniciu. Shape Regression Machine. IPMI, pages 13-25, 2007.
    • (2007) IPMI , pp. 13-25
    • Zhou, S.K.1    Comaniciu, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.