-
1
-
-
1942421209
-
Hidden Markov SVM
-
Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov SVM. ML Workshop, 20(1): 3, 2003.
-
(2003)
ML Workshop
, vol.20
, Issue.1
, pp. 3
-
-
Altun, Y.1
Tsochantaridis, I.2
Hofmann, T.3
-
2
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
J. Besag. On the statistical analysis of dirty pictures. J. Royal Stat. Soc. B, 48(3): 259-302, 1986.
-
(1986)
J. Royal Stat. Soc. B
, vol.48
, Issue.3
, pp. 259-302
-
-
Besag, J.1
-
3
-
-
0035509961
-
Fast approximate energy minimization via graph cuts
-
Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE TPAMI, 23(11): 1222-1239, 2001.
-
(2001)
IEEE TPAMI
, vol.23
, Issue.11
, pp. 1222-1239
-
-
Boykov, Y.1
Veksler, O.2
Zabih, R.3
-
4
-
-
24644478715
-
A non-local algorithm for image denoising
-
A. Buades, B. Coll, and J.M. Morel. A Non-Local Algorithm for Image Denoising. CVPR, 2005.
-
(2005)
CVPR
-
-
Buades, A.1
Coll, B.2
Morel, J.M.3
-
5
-
-
0035363218
-
Active appearance models
-
T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. TPAMI, 23(6): 681-685, 2001.
-
(2001)
TPAMI
, vol.23
, Issue.6
, pp. 681-685
-
-
Cootes, T.F.1
Edwards, G.J.2
Taylor, C.J.3
-
6
-
-
34547760736
-
Image denoising by sparse 3-D transform-domain collaborative filtering
-
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Img. Proc., 16(8): 2080-2095, 2007.
-
(2007)
IEEE Trans. Img. Proc.
, vol.16
, Issue.8
, pp. 2080-2095
-
-
Dabov, K.1
Foi, A.2
Katkovnik, V.3
Egiazarian, K.4
-
7
-
-
33751379736
-
Image denoising via sparse and redundant representations over learned dictionaries
-
M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE T Img. Proc., 15(12), 2006.
-
IEEE T Img. Proc.
, vol.15
, Issue.12
, pp. 2006
-
-
Elad, M.1
Aharon, M.2
-
9
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G.E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 14(8): 1771- 1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
11
-
-
0344120654
-
Discriminative random fields: A discriminative framework for contextual interaction in classification
-
S. Kumar and M. Hebert. Discriminative random fields: a discriminative framework for contextual interaction in classification. ICCV, 2003.
-
(2003)
ICCV
-
-
Kumar, S.1
Hebert, M.2
-
12
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. ICML 2001.
-
(2001)
ICML
-
-
Lafferty, J.D.1
Mccallum, A.2
Pereira, F.C.N.3
-
13
-
-
84862617580
-
Loss functions for discriminative training of energy-based models
-
Y. LeCun and F.J. Huang. Loss functions for discriminative training of energy-based models. AIStats, 3, 2005.
-
(2005)
AIStats
, vol.3
-
-
Lecun, Y.1
Huang, F.J.2
-
14
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms. ICCV 2001, 2: 416- 425.
-
ICCV 2001
, vol.2
, pp. 416-425
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
15
-
-
31344451735
-
Estimating the probability of the presence of a signal of interest in multiresolution singleand multiband image denoising
-
A. Pizurica and W. Philips. Estimating the Probability of the Presence of a Signal of Interest in Multiresolution Singleand Multiband Image Denoising. IEEE Trans. Img. Proc., 15(3): 654-665, 2006.
-
(2006)
IEEE Trans. Img. Proc.
, vol.15
, Issue.3
, pp. 654-665
-
-
Pizurica, A.1
Philips, W.2
-
16
-
-
0242636409
-
Image denoising using scale mixtures of Gaussians in the wavelet domain
-
J. Portilla, V. Strela, MJ Wainwright, and EP Simoncelli. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Img. Proc., 12(11): 1338-1351, 2003.
-
(2003)
IEEE Trans. Img. Proc.
, vol.12
, Issue.11
, pp. 1338-1351
-
-
Portilla, J.1
Strela, V.2
Wainwright, M.J.3
Simoncelli, E.P.4
-
17
-
-
84926736518
-
Some generalized order-disorder transitions
-
RB Potts. Some generalized order-disorder transitions. Proc. Camb. Phil. Soc, 48: 106-109, 1952.
-
(1952)
Proc. Camb. Phil. Soc
, vol.48
, pp. 106-109
-
-
Potts, R.B.1
-
18
-
-
24644467818
-
Fields of experts: A framework for learning image priors
-
S. Roth and MJ Black. Fields of Experts: a framework for learning image priors. CVPR 2005.
-
CVPR 2005
-
-
Roth, S.1
Black, M.J.2
-
19
-
-
0042850432
-
Stereo matching using belief propagation
-
J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief propagation. TPAMI, 25: 787-800, 2003.
-
(2003)
TPAMI
, vol.25
, pp. 787-800
-
-
Sun, J.1
Zheng, N.N.2
Shum, H.Y.3
-
20
-
-
0344983321
-
Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters
-
MF Tappen and WT Freeman. Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. ICCV, pages 900-906, 2003.
-
(2003)
ICCV
, pp. 900-906
-
-
Tappen, M.F.1
Freeman, W.T.2
-
21
-
-
34948890052
-
Utilizing variational optimization to learn Markov random fields
-
M.F. Tappen and FL Orlando. Utilizing Variational Optimization to Learn Markov Random Fields. CVPR, pages 1- 8, 2007.
-
(2007)
CVPR
, pp. 1-8
-
-
Tappen, M.F.1
Orlando, F.L.2
-
22
-
-
84864071180
-
Structured prediction via the extragradient method
-
B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured Prediction via the Extragradient Method. NIPS, 18: 1345, 2006.
-
(2006)
NIPS
, vol.18
, pp. 1345
-
-
Taskar, B.1
Lacoste-Julien, S.2
Jordan, M.3
-
23
-
-
0000865580
-
Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
-
P.D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. of AI Research, 2: 369-409, 1995.
-
(1995)
J. of ai Research
, vol.2
, pp. 369-409
-
-
Turney, P.D.1
-
24
-
-
33748685798
-
Estimating the "wrong" graphical model: Benefits in the computation-limited setting
-
M. J. Wainwright. Estimating the "wrong" graphical model: Benefits in the computation-limited setting. J. Mach. Learn. Res., 7: 1829-1859, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1829-1859
-
-
Wainwright, M.J.1
-
26
-
-
52249100995
-
SATzilla: Portfolio-based algorithm selection for SAT
-
L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Selection for SAT. J. of AI Research, 32: 565-606, 2008.
-
(2008)
J. of ai Research
, vol.32
, pp. 565-606
-
-
Xu, L.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
28
-
-
54949104993
-
Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.
-
Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-Chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. Medical Imaging, IEEE Transactions on, 27(11): 1668-1681, 2008.
-
(2008)
Medical Imaging, IEEE Transactions on
, vol.27
, Issue.11
, pp. 1668-1681
-
-
Zheng, Y.1
Barbu, A.2
Georgescu, B.3
Scheuering, M.4
Comaniciu, D.5
-
29
-
-
34548407826
-
Shape regression machine
-
S.K. Zhou and D. Comaniciu. Shape Regression Machine. IPMI, pages 13-25, 2007.
-
(2007)
IPMI
, pp. 13-25
-
-
Zhou, S.K.1
Comaniciu, D.2
|