메뉴 건너뛰기




Volumn 9785, Issue , 2016, Pages

Colitis detection on abdominal CT scans by rich feature hierarchies

Author keywords

Colitis; Convolutional neural networks (CNNs); Region proposal; Support vector machine (SVM)

Indexed keywords

COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DIAGNOSIS; DISEASES; IMAGE RETRIEVAL; MEDICAL IMAGING; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 84988909674     PISSN: 16057422     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.2217681     Document Type: Conference Paper
Times cited : (11)

References (13)
  • 1
    • 0035044853 scopus 로고    scopus 로고
    • CT of bowel wall thickening: Significance and pitfalls of interpretation
    • Macari, M. and E.J. Balthazar, CT of bowel wall thickening: Significance and pitfalls of interpretation. American Journal of Roentgenology, 2001. 176(5): p. 1105-1116.
    • (2001) American Journal of Roentgenology , vol.176 , Issue.5 , pp. 1105-1116
    • Macari, M.1    Balthazar, E.J.2
  • 2
    • 0028144634 scopus 로고
    • Colitis-use of ct findings in differential-diagnosis
    • Philpotts, L.E., et al., Colitis-Use of Ct Findings in Differential-Diagnosis. Radiology, 1994. 190(2): p. 445-449.
    • (1994) Radiology , vol.190 , Issue.2 , pp. 445-449
    • Philpotts, L.E.1
  • 4
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • 2013
    • Ciresan, D.C., et al., Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Medical Image Computing and Computer-Assisted Intervention-Miccai 2013, Pt Ii, 2013. 8150: p. 411-418.
    • (2013) Medical Image Computing and Computer-Assisted Intervention-Miccai , vol.8150 , pp. 411-418
    • Ciresan, D.C.1
  • 5
    • 84909644435 scopus 로고    scopus 로고
    • A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
    • Roth, H.R., et al., A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Pt I, 2014. 8673: p. 520-527.
    • (2014) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014 , vol.8673 , pp. 520-527
    • Roth, H.R.1
  • 6
    • 84943426034 scopus 로고    scopus 로고
    • Deep convolutional networks for pancreas segmentation in CT imaging
    • Roth, H.R., et al., Deep convolutional networks for pancreas segmentation in CT imaging. Medical Imaging 2015: Image Processing, 2015. 9413.
    • (2015) Medical Imaging 2015: Image Processing , pp. 9413
    • Roth, H.R.1
  • 7
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang, W.L., et al., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage, 2015. 108: p. 214-224.
    • (2015) Neuroimage , vol.108 , pp. 214-224
    • Zhang, W.L.1
  • 9
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. in NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 13
    • 77951298115 scopus 로고    scopus 로고
    • The Pascal Visual Object Classes (VOC) Challenge
    • Everingham, M., et al., The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 2010. 88(2): p. 303-338.
    • (2010) International Journal of Computer Vision , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.