-
1
-
-
0035044853
-
CT of bowel wall thickening: Significance and pitfalls of interpretation
-
Macari, M. and E.J. Balthazar, CT of bowel wall thickening: Significance and pitfalls of interpretation. American Journal of Roentgenology, 2001. 176(5): p. 1105-1116.
-
(2001)
American Journal of Roentgenology
, vol.176
, Issue.5
, pp. 1105-1116
-
-
Macari, M.1
Balthazar, E.J.2
-
2
-
-
0028144634
-
Colitis-use of ct findings in differential-diagnosis
-
Philpotts, L.E., et al., Colitis-Use of Ct Findings in Differential-Diagnosis. Radiology, 1994. 190(2): p. 445-449.
-
(1994)
Radiology
, vol.190
, Issue.2
, pp. 445-449
-
-
Philpotts, L.E.1
-
3
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Bengio, Y., A. Courville, and P. Vincent, Representation Learning: A Review and New Perspectives. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2013. 35(8): p. 1798-1828.
-
(2013)
Ieee Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
4
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
2013
-
Ciresan, D.C., et al., Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. Medical Image Computing and Computer-Assisted Intervention-Miccai 2013, Pt Ii, 2013. 8150: p. 411-418.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-Miccai
, vol.8150
, pp. 411-418
-
-
Ciresan, D.C.1
-
5
-
-
84909644435
-
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
Roth, H.R., et al., A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, Pt I, 2014. 8673: p. 520-527.
-
(2014)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014
, vol.8673
, pp. 520-527
-
-
Roth, H.R.1
-
6
-
-
84943426034
-
Deep convolutional networks for pancreas segmentation in CT imaging
-
Roth, H.R., et al., Deep convolutional networks for pancreas segmentation in CT imaging. Medical Imaging 2015: Image Processing, 2015. 9413.
-
(2015)
Medical Imaging 2015: Image Processing
, pp. 9413
-
-
Roth, H.R.1
-
7
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang, W.L., et al., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage, 2015. 108: p. 214-224.
-
(2015)
Neuroimage
, vol.108
, pp. 214-224
-
-
Zhang, W.L.1
-
9
-
-
84881160857
-
Selective search for object recognition
-
Uijlings, J.R.R., et al., Selective Search for Object Recognition. International Journal of Computer Vision, 2013. 104(2): p. 154-171.
-
(2013)
International Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
-
12
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. in NIPS. 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
13
-
-
77951298115
-
The Pascal Visual Object Classes (VOC) Challenge
-
Everingham, M., et al., The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 2010. 88(2): p. 303-338.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
|