-
1
-
-
85162498265
-
Better mini-batch algorithms via accelerated gradient methods
-
Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Advances in Neural Information Processing Systems (NIPS), pp. 1647–1655 (2011)
-
(2011)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1647-1655
-
-
Cotter, A.1
Shamir, O.2
Srebro, N.3
Sridharan, K.4
-
2
-
-
84898955433
-
Memory limited, streaming PCA
-
Mitliagkas, I., Caramanis, C., Jain, P.: Memory limited, streaming PCA. In: Advances in Neural Information Processing Systems (NIPS), pp. 2886–2894 (2013)
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2886-2894
-
-
Mitliagkas, I.1
Caramanis, C.2
Jain, P.3
-
3
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. (SIAM) 22(2), 341–362 (2012)
-
(2012)
SIAM J. Optim. (SIAM)
, vol.22
, Issue.2
, pp. 341-362
-
-
Nesterov, Y.1
-
4
-
-
84877750537
-
Stochastic convex optimization with bandit feedback
-
Agarwal, A., Foster, D.P., Hsu, D., Kakade, S.M., Rakhlin, A.: Stochastic convex optimization with bandit feedback. SIAM J. Optim. (SIAM) 23(1), 213–240 (2013)
-
(2013)
SIAM J. Optim. (SIAM)
, vol.23
, Issue.1
, pp. 213-240
-
-
Agarwal, A.1
Foster, D.P.2
Hsu, D.3
Kakade, S.M.4
Rakhlin, A.5
-
6
-
-
80053437034
-
On optimization methods for deep learning
-
Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML), pp. 265–272 (2011)
-
(2011)
Proceedings of the 28Th International Conference on Machine Learning (ICML)
, pp. 265-272
-
-
Le, Q.V.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.Y.6
-
7
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
Shalev-shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011)
-
(2011)
Math. Program
, vol.127
, Issue.1
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
8
-
-
80052400610
-
Modeling annotator expertise: Learning when everybody knows a bit of something
-
Yan, Y., Rosales, R., Fung, G., Schmidt, M., Hermosillo, G., Bogoni, L., Moy, L., Dy, J.-G.: Modeling annotator expertise: learning when everybody knows a bit of something. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 932–939 (2010)
-
(2010)
Proceedings of the 13Th International Conference on Artificial Intelligence and Statistics (AISTATS)
, pp. 932-939
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Schmidt, M.4
Hermosillo, G.5
Bogoni, L.6
Moy, L.7
Dy, J.-G.8
-
9
-
-
33747105621
-
Trading convexity for scalability
-
Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), pp. 201–208 (2006)
-
(2006)
Proceedings of the 23Rd International Conference on Machine Learning (ICML)
, pp. 201-208
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
10
-
-
85162048991
-
Relaxed clipping: A global training method for robust regression and classification
-
Yu, Y.-L., Yang, M., Xu, L.-L., White, M., Schuurmans, D.: Relaxed clipping: a global training method for robust regression and classification. In: Advances in Neural Information Processing Systems (NIPS), pp. 2532–2540 (2010)
-
(2010)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2532-2540
-
-
Yu, Y.-L.1
Yang, M.2
Xu, L.-L.3
White, M.4
Schuurmans, D.5
-
12
-
-
84892854517
-
Stochastic first-and zeroth-order methods for nonconvex stochastic programming
-
Ghadimi, S., Lan, G.-H.: Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. (SIAM) 23(4), 2341–2368 (2013)
-
(2013)
SIAM J. Optim. (SIAM)
, vol.23
, Issue.4
, pp. 2341-2368
-
-
Ghadimi, S.1
Lan, G.-H.2
-
13
-
-
84958124116
-
Accelerated gradient methods for nonconvex nonlinear and stochastic programming
-
Ghadimi, S., Lan, G.-H.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156, 59–99 (2015)
-
(2015)
Math. Program
, vol.156
, pp. 59-99
-
-
Ghadimi, S.1
Lan, G.-H.2
-
14
-
-
56449098486
-
Training robust support vector machine with smooth ramp loss in the primal space
-
Wang, L., Jia, H.-D., Li, J.: Training robust support vector machine with smooth ramp loss in the primal space. Neurocomputing 71(13), 3020–3025 (2008)
-
(2008)
Neurocomputing
, vol.71
, Issue.13
, pp. 3020-3025
-
-
Wang, L.1
Jia, H.-D.2
Li, J.3
-
15
-
-
85083950731
-
Training convolution networks with noisy labels
-
Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolution networks with noisy labels. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)
-
(2015)
Proceedings of the International Conference on Learning Representations (ICLR)
-
-
Sukhbaatar, S.1
Bruna, J.2
Paluri, M.3
Bourdev, L.4
Fergus, R.5
-
16
-
-
84898932626
-
Learning with noisy labels
-
Natarajan, N., Dhillon, I.S., Ravikumar, P.K., Tewari, A.: Learning with noisy labels. In: Advances in Neural Information Processing Systems (NIPS), pp. 1196–1204 (2013)
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1196-1204
-
-
Natarajan, N.1
Dhillon, I.S.2
Ravikumar, P.K.3
Tewari, A.4
-
17
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)
-
(2006)
J. Am. Stat. Assoc
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
18
-
-
84873371070
-
Fast global convergence of gradient methods for high-dimensional statistical recovery
-
Agarwal, A., Negahban, S., Wainwright, M.J.: Fast global convergence of gradient methods for high-dimensional statistical recovery. Ann. Stat. 40(5), 2452–2482 (2012)
-
(2012)
Ann. Stat
, vol.40
, Issue.5
, pp. 2452-2482
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.J.3
-
19
-
-
84930632658
-
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
-
Loh, P.-L., Wainwright, M.J.: Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima. J. Mach. Learn. Res. (JMLR) 16, 559–616 (2015)
-
(2015)
J. Mach. Learn. Res. (JMLR)
, vol.16
, pp. 559-616
-
-
Loh, P.-L.1
Wainwright, M.J.2
|