-
1
-
-
26244461684
-
Clustering with Bregman divergences
-
A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal of Machine Learning Research, 6:1705-1749, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.3
Ghosh, J.4
-
2
-
-
0030194054
-
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
-
M. Black and A. Rangarajan. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. International Journal of Computer Vision, 19(1):57-91, 1996.
-
(1996)
International Journal of Computer Vision
, vol.19
, Issue.1
, pp. 57-91
-
-
Black, M.1
Rangarajan, A.2
-
5
-
-
18244390064
-
On robustness properties of convex risk minimization methods for pattern recognition
-
A. Christmann and I. Steinwart. On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research, 5:1007-1034, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1007-1034
-
-
Christmann, A.1
Steinwart, I.2
-
6
-
-
42449093653
-
Consistency and robustness of kernel-based regression in convex risk minimization
-
A. Christmann and I. Steinwart. Consistency and robustness of kernel-based regression in convex risk minimization. Bernoulli, 13(3):799-819, 2007.
-
(2007)
Bernoulli
, vol.13
, Issue.3
, pp. 799-819
-
-
Christmann, A.1
Steinwart, I.2
-
7
-
-
0036643072
-
Logistic regression, AdaBoost and Bregman distances
-
M. Collins, R. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48, 2002.
-
(2002)
Machine Learning
, vol.48
-
-
Collins, M.1
Schapire, R.2
Singer, Y.3
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and Systems Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and Systems Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
14
-
-
0035575628
-
Relative loss bounds for multidimensional regression problems
-
J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Machine Learning, 45:301-329, 2001.
-
(2001)
Machine Learning
, vol.45
, pp. 301-329
-
-
Kivinen, J.1
Warmuth, M.2
-
16
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
P. Long and R. Servedio. Random classification noise defeats all convex potential boosters. Machine Learning, 78:287-304, 2010.
-
(2010)
Machine Learning
, vol.78
, pp. 287-304
-
-
Long, P.1
Servedio, R.2
-
18
-
-
77956005954
-
On the design of loss functions for classification: Theory, robustness to outliers, and SavageBoost
-
H. Masnadi-Shirazi and N. Vasconcelos. On the design of loss functions for classification: theory, robustness to outliers, and SavageBoost. In Advances in Neural Information Processing Systems (NIPS), volume 21, pages 1049-1056, 2008.
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.21
, pp. 1049-1056
-
-
Masnadi-Shirazi, H.1
Vasconcelos, N.2
-
21
-
-
34250080273
-
Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices
-
M. Overton and R. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Mathematical Programming, 62(2):321-357, 1993.
-
(1993)
Mathematical Programming
, vol.62
, Issue.2
, pp. 321-357
-
-
Overton, M.1
Womersley, R.2
-
25
-
-
0242679446
-
On -learning
-
X. Shen, G. Tseng, X. Zhang, and W.-H. Wong. On -learning. Journal of the American Statistical Association, 98(463):724-734, 2003.
-
(2003)
Journal of the American Statistical Association
, vol.98
, Issue.463
, pp. 724-734
-
-
Shen, X.1
Tseng, G.2
Zhang, X.3
Wong, W.-H.4
-
26
-
-
0033189795
-
Robust parameter estimation in computer vision
-
C. Stewart. Robust parameter estimation in computer vision. SIAM Review, 41(3), 1999.
-
(1999)
SIAM Review
, vol.41
, Issue.3
-
-
Stewart, C.1
-
27
-
-
35348869458
-
Robust truncated hinge loss support vector machines
-
Y. Wu and Y. Liu. Robust truncated hinge loss support vector machines. Journal of the American Statistical Association, 102(479):974-983, 2007.
-
(2007)
Journal of the American Statistical Association
, vol.102
, Issue.479
, pp. 974-983
-
-
Wu, Y.1
Liu, Y.2
-
28
-
-
84863338002
-
Robust regression and Lasso
-
H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. In Advances in Neural Information Processing Systems (NIPS), volume 21, pages 1801-1808, 2008.
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.21
, pp. 1801-1808
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
31
-
-
77951160087
-
A quasi-Newton approach to nonsmooth convex optimization problems in machine learning
-
J. Yu, S. Vishwanathan, S. Günter, and N. Schraudolph. A quasi-Newton approach to nonsmooth convex optimization problems in machine learning. J. of Machine Learning Research, 11:1145-1200, 2010.
-
(2010)
J. of Machine Learning Research
, vol.11
, pp. 1145-1200
-
-
Yu, J.1
Vishwanathan, S.2
Günter, S.3
Schraudolph, N.4
|