메뉴 건너뛰기




Volumn 126, Issue 5, 2016, Pages 1745-1758

SOX9 drives WNT pathway activation in prostate cancer

Author keywords

[No Author keywords available]

Indexed keywords

BETA CATENIN; FRIZZLED PROTEIN; LOW DENSITY LIPOPROTEIN RECEPTOR RELATED PROTEIN; PROTEIN SYNTHESIS INHIBITOR; TRANSCRIPTION FACTOR 7 LIKE 2; TRANSCRIPTION FACTOR SOX9; TRANSCRIPTOME; WNT PROTEIN; BASIC HELIX LOOP HELIX LEUCINE ZIPPER TRANSCRIPTION FACTOR; LGK974; PYRAZINE DERIVATIVE; PYRIDINE DERIVATIVE; SOX9 PROTEIN, HUMAN; TCF4 PROTEIN, HUMAN; TRANSCRIPTION FACTOR; TUMOR PROTEIN;

EID: 84988535650     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI78815     Document Type: Article
Times cited : (144)

References (75)
  • 1
    • 0028135336 scopus 로고
    • Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRYrelated gene
    • Foster JW, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRYrelated gene. Nature. 1994;372(6506):525-530.
    • (1994) Nature , vol.372 , Issue.6506 , pp. 525-530
    • Foster, J.W.1
  • 2
    • 0028589588 scopus 로고
    • Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9
    • Wagner T, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111-1120.
    • (1994) Cell , vol.79 , Issue.6 , pp. 1111-1120
    • Wagner, T.1
  • 3
    • 3142669010 scopus 로고    scopus 로고
    • SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes
    • Blache P, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37-47.
    • (2004) J Cell Biol. , vol.166 , Issue.1 , pp. 37-47
    • Blache, P.1
  • 4
    • 34247249338 scopus 로고    scopus 로고
    • Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development
    • Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007;305(1):120-132.
    • (2007) Dev Biol. , vol.305 , Issue.1 , pp. 120-132
    • Lincoln, J.1    Kist, R.2    Scherer, G.3    Yutzey, K.E.4
  • 5
    • 33846910410 scopus 로고    scopus 로고
    • SOX9 is required for maintenance of the pancreatic progenitor cell pool
    • Seymour PA, et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A. 2007;104(6):1865-1870.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.6 , pp. 1865-1870
    • Seymour, P.A.1
  • 6
    • 23244443556 scopus 로고    scopus 로고
    • Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment
    • Vidal VP, et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005;15(15):1340-1351.
    • (2005) Curr Biol. , vol.15 , Issue.15 , pp. 1340-1351
    • Vidal, V.P.1
  • 7
    • 78651228289 scopus 로고    scopus 로고
    • Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine
    • Furuyama K, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34-41.
    • (2011) Nat Genet. , vol.43 , Issue.1 , pp. 34-41
    • Furuyama, K.1
  • 8
    • 58049208376 scopus 로고    scopus 로고
    • Analysis of SOX9 expression in colorectal cancer
    • Lu B, et al. Analysis of SOX9 expression in colorectal cancer. Am J Clin Pathol. 2008;130(6):897-904.
    • (2008) Am J Clin Pathol , vol.130 , Issue.6 , pp. 897-904
    • Lu, B.1
  • 9
    • 84870803922 scopus 로고    scopus 로고
    • Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma
    • Kopp JL, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22(6):737-750.
    • (2012) Cancer Cell , vol.22 , Issue.6 , pp. 737-750
    • Kopp, J.L.1
  • 10
    • 84868612058 scopus 로고    scopus 로고
    • Sox9 is required for prostate development and prostate cancer initiation
    • Huang Z, et al. Sox9 is required for prostate development and prostate cancer initiation. Oncotarget. 2012;3(6):651-663.
    • (2012) Oncotarget , vol.3 , Issue.6 , pp. 651-663
    • Huang, Z.1
  • 11
    • 76249098305 scopus 로고    scopus 로고
    • SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation
    • Thomsen MK, et al. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res. 2010;70(3):979-987.
    • (2010) Cancer Res. , vol.70 , Issue.3 , pp. 979-987
    • Thomsen, M.K.1
  • 12
    • 33846673020 scopus 로고    scopus 로고
    • SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells
    • Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res. 2007;67(2):528-536.
    • (2007) Cancer Res. , vol.67 , Issue.2 , pp. 528-536
    • Wang, H.1    McKnight, N.C.2    Zhang, T.3    Lu, M.L.4    Balk, S.P.5    Yuan, X.6
  • 13
    • 40949145618 scopus 로고    scopus 로고
    • SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion
    • Wang H, et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 2008;68(6):1625-1630.
    • (2008) Cancer Res. , vol.68 , Issue.6 , pp. 1625-1630
    • Wang, H.1
  • 14
  • 15
    • 57349137675 scopus 로고    scopus 로고
    • Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer
    • Schaeffer EM, et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene. 2008;27(57):7180-7191.
    • (2008) Oncogene , vol.27 , Issue.57 , pp. 7180-7191
    • Schaeffer, E.M.1
  • 16
    • 36649025928 scopus 로고    scopus 로고
    • Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition
    • Acevedo VD, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell. 2007;12(6):559-571.
    • (2007) Cancer Cell , vol.12 , Issue.6 , pp. 559-571
    • Acevedo, V.D.1
  • 17
    • 84864624041 scopus 로고    scopus 로고
    • Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus
    • Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 2012;22(8):1437-1446.
    • (2012) Genome Res. , vol.22 , Issue.8 , pp. 1437-1446
    • Zhang, X.1    Cowper-Sal Lari, R.2    Bailey, S.D.3    Moore, J.H.4    Lupien, M.5
  • 18
    • 84874598190 scopus 로고    scopus 로고
    • ERG induces androgen receptormediated regulation of SOX9 in prostate cancer
    • Cai C, et al. ERG induces androgen receptormediated regulation of SOX9 in prostate cancer. J Clin Invest. 2013;123(3):1109-1122.
    • (2013) J Clin Invest , vol.123 , Issue.3 , pp. 1109-1122
    • Cai, C.1
  • 19
    • 39049150843 scopus 로고    scopus 로고
    • Role of the TMPRSS2-ERG gene fusion in prostate cancer
    • Tomlins SA, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177-188.
    • (2008) Neoplasia , vol.10 , Issue.2 , pp. 177-188
    • Tomlins, S.A.1
  • 20
    • 84882285291 scopus 로고    scopus 로고
    • ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss
    • Chen Y, et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med. 2013;19(8):1023-1029.
    • (2013) Nat Med. , vol.19 , Issue.8 , pp. 1023-1029
    • Chen, Y.1
  • 21
    • 77952103123 scopus 로고    scopus 로고
    • An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression
    • Yu J, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443-454.
    • (2010) Cancer Cell , vol.17 , Issue.5 , pp. 443-454
    • Yu, J.1
  • 22
    • 0034067651 scopus 로고    scopus 로고
    • Phosphorylation of SOX9 by cyclic AMPdependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer
    • Huang W, Zhou X, Lefebvre V, de Crombrugghe B. Phosphorylation of SOX9 by cyclic AMPdependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol. 2000;20(11):4149-4158.
    • (2000) Mol Cell Biol. , vol.20 , Issue.11 , pp. 4149-4158
    • Huang, W.1    Zhou, X.2    Lefebvre, V.3    De Crombrugghe, B.4
  • 23
    • 0033105051 scopus 로고    scopus 로고
    • The DNA-binding specificity of SOX9 and other SOX proteins
    • Mertin S, McDowall SG, Harley VR. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res. 1999;27(5):1359-1364.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.5 , pp. 1359-1364
    • Mertin, S.1    McDowall, S.G.2    Harley, V.R.3
  • 24
    • 77956322693 scopus 로고    scopus 로고
    • Identification of SOX9 interaction sites in the genome of chondrocytes
    • Oh CD, et al. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One. 2010;5(4):e10113.
    • (2010) PLoS One , vol.5 , Issue.4 , pp. e10113
    • Oh, C.D.1
  • 25
    • 84866336130 scopus 로고    scopus 로고
    • Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9
    • Bhandari RK, Haque MM, Skinner MK. Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9. PLoS One. 2012;7(9):e43380.
    • (2012) PLoS One , vol.7 , Issue.9 , pp. e43380
    • Bhandari, R.K.1    Haque, M.M.2    Skinner, M.K.3
  • 26
    • 84893942254 scopus 로고    scopus 로고
    • SOX9: A stem cell transcriptional regulator of secreted niche signaling factors
    • Kadaja M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev. 2014;28(4):328-341.
    • (2014) Genes Dev. , vol.28 , Issue.4 , pp. 328-341
    • Kadaja, M.1
  • 27
    • 84879645484 scopus 로고    scopus 로고
    • Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion
    • Wang G, et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet. 2013;45(7):739-746.
    • (2013) Nat Genet , vol.45 , Issue.7 , pp. 739-746
    • Wang, G.1
  • 28
    • 77954255681 scopus 로고    scopus 로고
    • Integrative genomic profiling of human prostate cancer
    • Taylor BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11-22.
    • (2010) Cancer Cell , vol.18 , Issue.1 , pp. 11-22
    • Taylor, B.S.1
  • 29
    • 84857061462 scopus 로고    scopus 로고
    • Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation
    • Haller R, et al. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ. 2012;19(3):461-469.
    • (2012) Cell Death Differ. , vol.19 , Issue.3 , pp. 461-469
    • Haller, R.1
  • 30
    • 84875796343 scopus 로고    scopus 로고
    • A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance
    • Martini S, et al. A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells. 2013;31(4):741-751.
    • (2013) Stem Cells , vol.31 , Issue.4 , pp. 741-751
    • Martini, S.1
  • 31
    • 84863088235 scopus 로고    scopus 로고
    • A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation
    • Shih HP, et al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development. 2012;139(14):2488-2499.
    • (2012) Development , vol.139 , Issue.14 , pp. 2488-2499
    • Shih, H.P.1
  • 32
    • 81055129938 scopus 로고    scopus 로고
    • Activation of c-MET induces a stem-like phenotype in human prostate cancer
    • van Leenders GJ, et al. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One. 2011;6(11):e26753.
    • (2011) PLoS One , vol.6 , Issue.11 , pp. e26753
    • Van Leenders, G.J.1
  • 33
    • 3142669010 scopus 로고    scopus 로고
    • SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes
    • Blache P, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37-47.
    • (2004) J Cell Biol. , vol.166 , Issue.1 , pp. 37-47
    • Blache, P.1
  • 34
    • 84884726374 scopus 로고    scopus 로고
    • Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis
    • Kruithof-de Julio M, et al. Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Dev Dyn. 2013;242(10):1160-1171.
    • (2013) Dev Dyn. , vol.242 , Issue.10 , pp. 1160-1171
    • Kruithof-De Julio, M.1
  • 35
    • 77956290679 scopus 로고    scopus 로고
    • FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelialto-mesenchymal transition in human prostate cancer cells
    • Gupta S, et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelialto-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70(17):6735-6745.
    • (2010) Cancer Res , vol.70 , Issue.17 , pp. 6735-6745
    • Gupta, S.1
  • 36
    • 84885027771 scopus 로고    scopus 로고
    • ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer
    • Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 2013;73(19):6068-6079.
    • (2013) Cancer Res. , vol.73 , Issue.19 , pp. 6068-6079
    • Wu, L.1    Zhao, J.C.2    Kim, J.3    Jin, H.J.4    Wang, C.Y.5    Yu, J.6
  • 37
    • 84874769801 scopus 로고    scopus 로고
    • SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/ β-catenin activation in breast cancer
    • Wang H, et al. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/ β-catenin activation in breast cancer. J Biol Chem. 2013;288(9):6478-6487.
    • (2013) J Biol Chem. , vol.288 , Issue.9 , pp. 6478-6487
    • Wang, H.1
  • 38
    • 36549074631 scopus 로고    scopus 로고
    • YAP1 increases organ size and expands undifferentiated progenitor cells
    • Camargo FD, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17(23):2054-2060.
    • (2007) Curr Biol. , vol.17 , Issue.23 , pp. 2054-2060
    • Camargo, F.D.1
  • 39
    • 84871576111 scopus 로고    scopus 로고
    • β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis
    • Rosenbluh J, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151(7):1457-1473.
    • (2012) Cell , vol.151 , Issue.7 , pp. 1457-1473
    • Rosenbluh, J.1
  • 40
    • 73949156925 scopus 로고    scopus 로고
    • Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases
    • Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn. 2010;239(1):1-15.
    • (2010) Dev Dyn. , vol.239 , Issue.1 , pp. 1-15
    • Minami, Y.1    Oishi, I.2    Endo, M.3    Nishita, M.4
  • 41
    • 84893223752 scopus 로고    scopus 로고
    • The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction
    • Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol. 2013;6(2):a009175.
    • (2013) Cold Spring Harb Perspect Biol. , vol.6 , Issue.2 , pp. a009175
    • Green, J.1    Nusse, R.2    Van Amerongen, R.3
  • 42
    • 84858228855 scopus 로고    scopus 로고
    • Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis
    • Ho HY, et al. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A. 2012;109(11):4044-4051.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.11 , pp. 4044-4051
    • Ho, H.Y.1
  • 43
    • 84901711204 scopus 로고    scopus 로고
    • Selection of personalized patient therapy through the use of knowledgebased computational models that identify tumordriving signal transduction pathways
    • Verhaegh W, et al. Selection of personalized patient therapy through the use of knowledgebased computational models that identify tumordriving signal transduction pathways. Cancer Res. 2014;74(11):2936-2945.
    • (2014) Cancer Res. , vol.74 , Issue.11 , pp. 2936-2945
    • Verhaegh, W.1
  • 44
    • 84890281677 scopus 로고    scopus 로고
    • Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974
    • Liu J, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110(50):20224-20229.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.50 , pp. 20224-20229
    • Liu, J.1
  • 45
    • 1642512639 scopus 로고    scopus 로고
    • Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex
    • Lepourcelet M, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91-102.
    • (2004) Cancer Cell , vol.5 , Issue.1 , pp. 91-102
    • Lepourcelet, M.1
  • 46
    • 33646583259 scopus 로고    scopus 로고
    • Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention
    • Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci. 2006;119(pt 7):1453-1463.
    • (2006) J Cell Sci. , vol.119 , pp. 1453-1463
    • Krieghoff, E.1    Behrens, J.2    Mayr, B.3
  • 47
    • 49649121331 scopus 로고    scopus 로고
    • Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity
    • Placencio VR, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709-4718.
    • (2008) Cancer Res. , vol.68 , Issue.12 , pp. 4709-4718
    • Placencio, V.R.1
  • 48
    • 58149215849 scopus 로고    scopus 로고
    • Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis
    • Li X, et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene. 2008;27(56):7118-7130.
    • (2008) Oncogene , vol.27 , Issue.56 , pp. 7118-7130
    • Li, X.1
  • 49
    • 67649948804 scopus 로고    scopus 로고
    • WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics
    • Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19(6):683-697.
    • (2009) Cell Res , vol.19 , Issue.6 , pp. 683-697
    • Bisson, I.1    Prowse, D.M.2
  • 50
    • 58249105729 scopus 로고    scopus 로고
    • K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse
    • Pearson HB, Phesse TJ, Clarke AR. K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res. 2009;69(1):94-101.
    • (2009) Cancer Res , vol.69 , Issue.1 , pp. 94-101
    • Pearson, H.B.1    Phesse, T.J.2    Clarke, A.R.3
  • 51
    • 79955479314 scopus 로고    scopus 로고
    • Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model
    • Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ. Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. Oncogene. 2011;30(16):1868-1879.
    • (2011) Oncogene , vol.30 , Issue.16 , pp. 1868-1879
    • Yu, X.1    Wang, Y.2    DeGraff, D.J.3    Wills, M.L.4    Matusik, R.J.5
  • 52
    • 84874440778 scopus 로고    scopus 로고
    • Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling
    • Zong Y, et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(50):E3395-E3404.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.50 , pp. E3395-E3404
    • Zong, Y.1
  • 53
    • 84873486287 scopus 로고    scopus 로고
    • β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma
    • Francis JC, Thomsen MK, Taketo MM, Swain A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 2013;9(1):e1003180.
    • (2013) PLoS Genet , vol.9 , Issue.1 , pp. e1003180
    • Francis, J.C.1    Thomsen, M.K.2    Taketo, M.M.3    Swain, A.4
  • 54
    • 84892908353 scopus 로고    scopus 로고
    • FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma
    • Carstens JL, et al. FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res. 2014;74(2):609-620.
    • (2014) Cancer Res. , vol.74 , Issue.2 , pp. 609-620
    • Carstens, J.L.1
  • 55
    • 84864877553 scopus 로고    scopus 로고
    • Wnt/β-catenin signalling in prostate cancer
    • Kypta RM, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol. 2012;9(8):418-428.
    • (2012) Nat Rev Urol. , vol.9 , Issue.8 , pp. 418-428
    • Kypta, R.M.1    Waxman, J.2
  • 56
    • 1642270365 scopus 로고    scopus 로고
    • Expression of β-catenin in prostatic adenocarcinomas: A comparison with colorectal adenocarcinomas
    • Bismar TA, Humphrey PA, Grignon DJ, Wang HL. Expression of β-catenin in prostatic adenocarcinomas: a comparison with colorectal adenocarcinomas. Am J Clin Pathol. 2004;121(4):557-563.
    • (2004) Am J Clin Pathol. , vol.121 , Issue.4 , pp. 557-563
    • Bismar, T.A.1    Humphrey, P.A.2    Grignon, D.J.3    Wang, H.L.4
  • 57
    • 0037989873 scopus 로고    scopus 로고
    • Beta-catenin-related anomalies in apoptosis-resistant and hormonerefractory prostate cancer cells
    • de la Taille A, et al. Beta-catenin-related anomalies in apoptosis-resistant and hormonerefractory prostate cancer cells. Clin Cancer Res. 2003;9(5):1801-1807.
    • (2003) Clin Cancer Res. , vol.9 , Issue.5 , pp. 1801-1807
    • De La, T.A.1
  • 58
    • 19944382766 scopus 로고    scopus 로고
    • Lower levels of nuclear β-catenin predict for a poorer prognosis in localized prostate cancer
    • Horvath LG, et al. Lower levels of nuclear β-catenin predict for a poorer prognosis in localized prostate cancer. Int J Cancer. 2005;113(3):415-422.
    • (2005) Int J Cancer , vol.113 , Issue.3 , pp. 415-422
    • Horvath, L.G.1
  • 59
    • 0035576259 scopus 로고    scopus 로고
    • Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas
    • Kallakury BV, et al. Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer. 2001;92(11):2786-2795.
    • (2001) Cancer , vol.92 , Issue.11 , pp. 2786-2795
    • Kallakury, B.V.1
  • 60
    • 48749129835 scopus 로고    scopus 로고
    • Alterations in β-catenin expression and localization in prostate cancer
    • Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE. Alterations in β-catenin expression and localization in prostate cancer. Prostate. 2008;68(11):1196-1205.
    • (2008) Prostate , vol.68 , Issue.11 , pp. 1196-1205
    • Whitaker, H.C.1    Girling, J.2    Warren, A.Y.3    Leung, H.4    Mills, I.G.5    Neal, D.E.6
  • 61
    • 0034283030 scopus 로고    scopus 로고
    • β-Catenin affects androgen receptor transcriptional activity and ligand specificity
    • Truica CI, Byers S, Gelmann EP. β-Catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000;60(17):4709-4713.
    • (2000) Cancer Res. , vol.60 , Issue.17 , pp. 4709-4713
    • Truica, C.I.1    Byers, S.2    Gelmann, E.P.3
  • 62
    • 0041335563 scopus 로고    scopus 로고
    • Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: A means for inhibition of the Tcf signaling axis
    • Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC. Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: a means for inhibition of the Tcf signaling axis. Oncogene. 2003;22(36):5602-5613.
    • (2003) Oncogene , vol.22 , Issue.36 , pp. 5602-5613
    • Mulholland, D.J.1    Read, J.T.2    Rennie, P.S.3    Cox, M.E.4    Nelson, C.C.5
  • 63
    • 0037192870 scopus 로고    scopus 로고
    • Linking β-catenin to androgen-signaling pathway
    • Yang F, et al. Linking β-catenin to androgen-signaling pathway. J Biol Chem. 2002;277(13):11336-11344.
    • (2002) J Biol Chem. , vol.277 , Issue.13 , pp. 11336-11344
    • Yang, F.1
  • 64
    • 0043234530 scopus 로고    scopus 로고
    • A direct β-catenin-independent interaction between androgen receptor and T cell factor 4
    • Amir AL, Barua M, McKnight NC, Cheng S, Yuan X, Balk SP. A direct β-catenin-independent interaction between androgen receptor and T cell factor 4. J Biol Chem. 2003;278(33):30828-30834.
    • (2003) J Biol Chem. , vol.278 , Issue.33 , pp. 30828-30834
    • Amir, A.L.1    Barua, M.2    McKnight, N.C.3    Cheng, S.4    Yuan, X.5    Balk, S.P.6
  • 66
    • 84930591340 scopus 로고    scopus 로고
    • ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors
    • Nguyen LT, et al. ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors. Cancer Cell. 2015;27(6):797-808.
    • (2015) Cancer Cell , vol.27 , Issue.6 , pp. 797-808
    • Nguyen, L.T.1
  • 67
    • 84868633053 scopus 로고    scopus 로고
    • Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B
    • Sun Y, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359-1368.
    • (2012) Nat Med. , vol.18 , Issue.9 , pp. 1359-1368
    • Sun, Y.1
  • 68
    • 2442514340 scopus 로고    scopus 로고
    • Interactions between Sox9 and β-catenin control chondrocyte differentiation
    • Akiyama H, et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072-1087.
    • (2004) Genes Dev. , vol.18 , Issue.9 , pp. 1072-1087
    • Akiyama, H.1
  • 69
    • 59149089747 scopus 로고    scopus 로고
    • Sox9 inhibits Wnt signaling by promoting β-catenin phosphorylation in the nucleus
    • Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting β-catenin phosphorylation in the nucleus. J Biol Chem. 2009;284(5):3323-3333.
    • (2009) J Biol Chem. , vol.284 , Issue.5 , pp. 3323-3333
    • Topol, L.1    Chen, W.2    Song, H.3    Day, T.F.4    Yang, Y.5
  • 70
    • 84872732113 scopus 로고    scopus 로고
    • DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases
    • Aryee MJ, et al. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci Transl Med. 2013;5(169):169ra10.
    • (2013) Sci Transl Med. , vol.5 , Issue.169 , pp. 169-1610
    • Aryee, M.J.1
  • 71
    • 84882449183 scopus 로고    scopus 로고
    • APC gene hypermethylation and prostate cancer: A systematic review and meta-analysis
    • Chen Y, et al. APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet. 2013;21(9):929-935.
    • (2013) Eur J Hum Genet , vol.21 , Issue.9 , pp. 929-935
    • Chen, Y.1
  • 72
    • 84930225081 scopus 로고    scopus 로고
    • Integrative clinical genomics of advanced prostate cancer
    • Robinson D, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215-1228.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1215-1228
    • Robinson, D.1
  • 73
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1
  • 74
    • 53849146020 scopus 로고    scopus 로고
    • Model-based analysis of ChIP-Seq (MACS)
    • Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
    • (2008) Genome Biol. , vol.9 , Issue.9 , pp. R137
    • Zhang, Y.1
  • 75
    • 80052022462 scopus 로고    scopus 로고
    • Cistrome: An integrative platform for transcriptional regulation studies
    • Liu T, et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 2011;12(8):R83.
    • (2011) Genome Biol. , vol.12 , Issue.8 , pp. R83
    • Liu, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.