-
1
-
-
0028135336
-
Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRYrelated gene
-
Foster JW, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRYrelated gene. Nature. 1994;372(6506):525-530.
-
(1994)
Nature
, vol.372
, Issue.6506
, pp. 525-530
-
-
Foster, J.W.1
-
2
-
-
0028589588
-
Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9
-
Wagner T, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111-1120.
-
(1994)
Cell
, vol.79
, Issue.6
, pp. 1111-1120
-
-
Wagner, T.1
-
3
-
-
3142669010
-
SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes
-
Blache P, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37-47.
-
(2004)
J Cell Biol.
, vol.166
, Issue.1
, pp. 37-47
-
-
Blache, P.1
-
4
-
-
34247249338
-
Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development
-
Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007;305(1):120-132.
-
(2007)
Dev Biol.
, vol.305
, Issue.1
, pp. 120-132
-
-
Lincoln, J.1
Kist, R.2
Scherer, G.3
Yutzey, K.E.4
-
5
-
-
33846910410
-
SOX9 is required for maintenance of the pancreatic progenitor cell pool
-
Seymour PA, et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A. 2007;104(6):1865-1870.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.6
, pp. 1865-1870
-
-
Seymour, P.A.1
-
6
-
-
23244443556
-
Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment
-
Vidal VP, et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005;15(15):1340-1351.
-
(2005)
Curr Biol.
, vol.15
, Issue.15
, pp. 1340-1351
-
-
Vidal, V.P.1
-
7
-
-
78651228289
-
Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine
-
Furuyama K, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34-41.
-
(2011)
Nat Genet.
, vol.43
, Issue.1
, pp. 34-41
-
-
Furuyama, K.1
-
8
-
-
58049208376
-
Analysis of SOX9 expression in colorectal cancer
-
Lu B, et al. Analysis of SOX9 expression in colorectal cancer. Am J Clin Pathol. 2008;130(6):897-904.
-
(2008)
Am J Clin Pathol
, vol.130
, Issue.6
, pp. 897-904
-
-
Lu, B.1
-
9
-
-
84870803922
-
Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma
-
Kopp JL, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22(6):737-750.
-
(2012)
Cancer Cell
, vol.22
, Issue.6
, pp. 737-750
-
-
Kopp, J.L.1
-
10
-
-
84868612058
-
Sox9 is required for prostate development and prostate cancer initiation
-
Huang Z, et al. Sox9 is required for prostate development and prostate cancer initiation. Oncotarget. 2012;3(6):651-663.
-
(2012)
Oncotarget
, vol.3
, Issue.6
, pp. 651-663
-
-
Huang, Z.1
-
11
-
-
76249098305
-
SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation
-
Thomsen MK, et al. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res. 2010;70(3):979-987.
-
(2010)
Cancer Res.
, vol.70
, Issue.3
, pp. 979-987
-
-
Thomsen, M.K.1
-
12
-
-
33846673020
-
SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells
-
Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res. 2007;67(2):528-536.
-
(2007)
Cancer Res.
, vol.67
, Issue.2
, pp. 528-536
-
-
Wang, H.1
McKnight, N.C.2
Zhang, T.3
Lu, M.L.4
Balk, S.P.5
Yuan, X.6
-
13
-
-
40949145618
-
SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion
-
Wang H, et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 2008;68(6):1625-1630.
-
(2008)
Cancer Res.
, vol.68
, Issue.6
, pp. 1625-1630
-
-
Wang, H.1
-
14
-
-
41149136532
-
Sox9 is required for prostate development
-
Thomsen MK, Butler CM, Shen MM, Swain A. Sox9 is required for prostate development. Dev Biol. 2008;316(2):302-311.
-
(2008)
Dev Biol.
, vol.316
, Issue.2
, pp. 302-311
-
-
Thomsen, M.K.1
Butler, C.M.2
Shen, M.M.3
Swain, A.4
-
15
-
-
57349137675
-
Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer
-
Schaeffer EM, et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene. 2008;27(57):7180-7191.
-
(2008)
Oncogene
, vol.27
, Issue.57
, pp. 7180-7191
-
-
Schaeffer, E.M.1
-
16
-
-
36649025928
-
Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition
-
Acevedo VD, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell. 2007;12(6):559-571.
-
(2007)
Cancer Cell
, vol.12
, Issue.6
, pp. 559-571
-
-
Acevedo, V.D.1
-
17
-
-
84864624041
-
Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus
-
Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 2012;22(8):1437-1446.
-
(2012)
Genome Res.
, vol.22
, Issue.8
, pp. 1437-1446
-
-
Zhang, X.1
Cowper-Sal Lari, R.2
Bailey, S.D.3
Moore, J.H.4
Lupien, M.5
-
18
-
-
84874598190
-
ERG induces androgen receptormediated regulation of SOX9 in prostate cancer
-
Cai C, et al. ERG induces androgen receptormediated regulation of SOX9 in prostate cancer. J Clin Invest. 2013;123(3):1109-1122.
-
(2013)
J Clin Invest
, vol.123
, Issue.3
, pp. 1109-1122
-
-
Cai, C.1
-
19
-
-
39049150843
-
Role of the TMPRSS2-ERG gene fusion in prostate cancer
-
Tomlins SA, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177-188.
-
(2008)
Neoplasia
, vol.10
, Issue.2
, pp. 177-188
-
-
Tomlins, S.A.1
-
20
-
-
84882285291
-
ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss
-
Chen Y, et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med. 2013;19(8):1023-1029.
-
(2013)
Nat Med.
, vol.19
, Issue.8
, pp. 1023-1029
-
-
Chen, Y.1
-
21
-
-
77952103123
-
An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression
-
Yu J, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443-454.
-
(2010)
Cancer Cell
, vol.17
, Issue.5
, pp. 443-454
-
-
Yu, J.1
-
22
-
-
0034067651
-
Phosphorylation of SOX9 by cyclic AMPdependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer
-
Huang W, Zhou X, Lefebvre V, de Crombrugghe B. Phosphorylation of SOX9 by cyclic AMPdependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Mol Cell Biol. 2000;20(11):4149-4158.
-
(2000)
Mol Cell Biol.
, vol.20
, Issue.11
, pp. 4149-4158
-
-
Huang, W.1
Zhou, X.2
Lefebvre, V.3
De Crombrugghe, B.4
-
23
-
-
0033105051
-
The DNA-binding specificity of SOX9 and other SOX proteins
-
Mertin S, McDowall SG, Harley VR. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res. 1999;27(5):1359-1364.
-
(1999)
Nucleic Acids Res.
, vol.27
, Issue.5
, pp. 1359-1364
-
-
Mertin, S.1
McDowall, S.G.2
Harley, V.R.3
-
24
-
-
77956322693
-
Identification of SOX9 interaction sites in the genome of chondrocytes
-
Oh CD, et al. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One. 2010;5(4):e10113.
-
(2010)
PLoS One
, vol.5
, Issue.4
, pp. e10113
-
-
Oh, C.D.1
-
25
-
-
84866336130
-
Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9
-
Bhandari RK, Haque MM, Skinner MK. Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9. PLoS One. 2012;7(9):e43380.
-
(2012)
PLoS One
, vol.7
, Issue.9
, pp. e43380
-
-
Bhandari, R.K.1
Haque, M.M.2
Skinner, M.K.3
-
26
-
-
84893942254
-
SOX9: A stem cell transcriptional regulator of secreted niche signaling factors
-
Kadaja M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev. 2014;28(4):328-341.
-
(2014)
Genes Dev.
, vol.28
, Issue.4
, pp. 328-341
-
-
Kadaja, M.1
-
27
-
-
84879645484
-
Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion
-
Wang G, et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet. 2013;45(7):739-746.
-
(2013)
Nat Genet
, vol.45
, Issue.7
, pp. 739-746
-
-
Wang, G.1
-
28
-
-
77954255681
-
Integrative genomic profiling of human prostate cancer
-
Taylor BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11-22.
-
(2010)
Cancer Cell
, vol.18
, Issue.1
, pp. 11-22
-
-
Taylor, B.S.1
-
29
-
-
84857061462
-
Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation
-
Haller R, et al. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ. 2012;19(3):461-469.
-
(2012)
Cell Death Differ.
, vol.19
, Issue.3
, pp. 461-469
-
-
Haller, R.1
-
30
-
-
84875796343
-
A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance
-
Martini S, et al. A critical role for Sox9 in notch-induced astrogliogenesis and stem cell maintenance. Stem Cells. 2013;31(4):741-751.
-
(2013)
Stem Cells
, vol.31
, Issue.4
, pp. 741-751
-
-
Martini, S.1
-
31
-
-
84863088235
-
A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation
-
Shih HP, et al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development. 2012;139(14):2488-2499.
-
(2012)
Development
, vol.139
, Issue.14
, pp. 2488-2499
-
-
Shih, H.P.1
-
32
-
-
81055129938
-
Activation of c-MET induces a stem-like phenotype in human prostate cancer
-
van Leenders GJ, et al. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One. 2011;6(11):e26753.
-
(2011)
PLoS One
, vol.6
, Issue.11
, pp. e26753
-
-
Van Leenders, G.J.1
-
33
-
-
3142669010
-
SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes
-
Blache P, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004;166(1):37-47.
-
(2004)
J Cell Biol.
, vol.166
, Issue.1
, pp. 37-47
-
-
Blache, P.1
-
34
-
-
84884726374
-
Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis
-
Kruithof-de Julio M, et al. Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Dev Dyn. 2013;242(10):1160-1171.
-
(2013)
Dev Dyn.
, vol.242
, Issue.10
, pp. 1160-1171
-
-
Kruithof-De Julio, M.1
-
35
-
-
77956290679
-
FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelialto-mesenchymal transition in human prostate cancer cells
-
Gupta S, et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelialto-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70(17):6735-6745.
-
(2010)
Cancer Res
, vol.70
, Issue.17
, pp. 6735-6745
-
-
Gupta, S.1
-
36
-
-
84885027771
-
ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer
-
Wu L, Zhao JC, Kim J, Jin HJ, Wang CY, Yu J. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 2013;73(19):6068-6079.
-
(2013)
Cancer Res.
, vol.73
, Issue.19
, pp. 6068-6079
-
-
Wu, L.1
Zhao, J.C.2
Kim, J.3
Jin, H.J.4
Wang, C.Y.5
Yu, J.6
-
37
-
-
84874769801
-
SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/ β-catenin activation in breast cancer
-
Wang H, et al. SOX9 regulates low density lipoprotein receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4) expression and Wnt/ β-catenin activation in breast cancer. J Biol Chem. 2013;288(9):6478-6487.
-
(2013)
J Biol Chem.
, vol.288
, Issue.9
, pp. 6478-6487
-
-
Wang, H.1
-
38
-
-
36549074631
-
YAP1 increases organ size and expands undifferentiated progenitor cells
-
Camargo FD, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17(23):2054-2060.
-
(2007)
Curr Biol.
, vol.17
, Issue.23
, pp. 2054-2060
-
-
Camargo, F.D.1
-
39
-
-
84871576111
-
β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis
-
Rosenbluh J, et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151(7):1457-1473.
-
(2012)
Cell
, vol.151
, Issue.7
, pp. 1457-1473
-
-
Rosenbluh, J.1
-
40
-
-
73949156925
-
Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases
-
Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn. 2010;239(1):1-15.
-
(2010)
Dev Dyn.
, vol.239
, Issue.1
, pp. 1-15
-
-
Minami, Y.1
Oishi, I.2
Endo, M.3
Nishita, M.4
-
41
-
-
84893223752
-
The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction
-
Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol. 2013;6(2):a009175.
-
(2013)
Cold Spring Harb Perspect Biol.
, vol.6
, Issue.2
, pp. a009175
-
-
Green, J.1
Nusse, R.2
Van Amerongen, R.3
-
42
-
-
84858228855
-
Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis
-
Ho HY, et al. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A. 2012;109(11):4044-4051.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.11
, pp. 4044-4051
-
-
Ho, H.Y.1
-
43
-
-
84901711204
-
Selection of personalized patient therapy through the use of knowledgebased computational models that identify tumordriving signal transduction pathways
-
Verhaegh W, et al. Selection of personalized patient therapy through the use of knowledgebased computational models that identify tumordriving signal transduction pathways. Cancer Res. 2014;74(11):2936-2945.
-
(2014)
Cancer Res.
, vol.74
, Issue.11
, pp. 2936-2945
-
-
Verhaegh, W.1
-
44
-
-
84890281677
-
Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974
-
Liu J, et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A. 2013;110(50):20224-20229.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.50
, pp. 20224-20229
-
-
Liu, J.1
-
45
-
-
1642512639
-
Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex
-
Lepourcelet M, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91-102.
-
(2004)
Cancer Cell
, vol.5
, Issue.1
, pp. 91-102
-
-
Lepourcelet, M.1
-
46
-
-
33646583259
-
Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention
-
Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci. 2006;119(pt 7):1453-1463.
-
(2006)
J Cell Sci.
, vol.119
, pp. 1453-1463
-
-
Krieghoff, E.1
Behrens, J.2
Mayr, B.3
-
47
-
-
49649121331
-
Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity
-
Placencio VR, et al. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res. 2008;68(12):4709-4718.
-
(2008)
Cancer Res.
, vol.68
, Issue.12
, pp. 4709-4718
-
-
Placencio, V.R.1
-
48
-
-
58149215849
-
Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis
-
Li X, et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene. 2008;27(56):7118-7130.
-
(2008)
Oncogene
, vol.27
, Issue.56
, pp. 7118-7130
-
-
Li, X.1
-
49
-
-
67649948804
-
WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics
-
Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19(6):683-697.
-
(2009)
Cell Res
, vol.19
, Issue.6
, pp. 683-697
-
-
Bisson, I.1
Prowse, D.M.2
-
50
-
-
58249105729
-
K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse
-
Pearson HB, Phesse TJ, Clarke AR. K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res. 2009;69(1):94-101.
-
(2009)
Cancer Res
, vol.69
, Issue.1
, pp. 94-101
-
-
Pearson, H.B.1
Phesse, T.J.2
Clarke, A.R.3
-
51
-
-
79955479314
-
Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model
-
Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ. Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. Oncogene. 2011;30(16):1868-1879.
-
(2011)
Oncogene
, vol.30
, Issue.16
, pp. 1868-1879
-
-
Yu, X.1
Wang, Y.2
DeGraff, D.J.3
Wills, M.L.4
Matusik, R.J.5
-
52
-
-
84874440778
-
Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling
-
Zong Y, et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(50):E3395-E3404.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.50
, pp. E3395-E3404
-
-
Zong, Y.1
-
53
-
-
84873486287
-
β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma
-
Francis JC, Thomsen MK, Taketo MM, Swain A. β-Catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma. PLoS Genet. 2013;9(1):e1003180.
-
(2013)
PLoS Genet
, vol.9
, Issue.1
, pp. e1003180
-
-
Francis, J.C.1
Thomsen, M.K.2
Taketo, M.M.3
Swain, A.4
-
54
-
-
84892908353
-
FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma
-
Carstens JL, et al. FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res. 2014;74(2):609-620.
-
(2014)
Cancer Res.
, vol.74
, Issue.2
, pp. 609-620
-
-
Carstens, J.L.1
-
55
-
-
84864877553
-
Wnt/β-catenin signalling in prostate cancer
-
Kypta RM, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol. 2012;9(8):418-428.
-
(2012)
Nat Rev Urol.
, vol.9
, Issue.8
, pp. 418-428
-
-
Kypta, R.M.1
Waxman, J.2
-
56
-
-
1642270365
-
Expression of β-catenin in prostatic adenocarcinomas: A comparison with colorectal adenocarcinomas
-
Bismar TA, Humphrey PA, Grignon DJ, Wang HL. Expression of β-catenin in prostatic adenocarcinomas: a comparison with colorectal adenocarcinomas. Am J Clin Pathol. 2004;121(4):557-563.
-
(2004)
Am J Clin Pathol.
, vol.121
, Issue.4
, pp. 557-563
-
-
Bismar, T.A.1
Humphrey, P.A.2
Grignon, D.J.3
Wang, H.L.4
-
57
-
-
0037989873
-
Beta-catenin-related anomalies in apoptosis-resistant and hormonerefractory prostate cancer cells
-
de la Taille A, et al. Beta-catenin-related anomalies in apoptosis-resistant and hormonerefractory prostate cancer cells. Clin Cancer Res. 2003;9(5):1801-1807.
-
(2003)
Clin Cancer Res.
, vol.9
, Issue.5
, pp. 1801-1807
-
-
De La, T.A.1
-
58
-
-
19944382766
-
Lower levels of nuclear β-catenin predict for a poorer prognosis in localized prostate cancer
-
Horvath LG, et al. Lower levels of nuclear β-catenin predict for a poorer prognosis in localized prostate cancer. Int J Cancer. 2005;113(3):415-422.
-
(2005)
Int J Cancer
, vol.113
, Issue.3
, pp. 415-422
-
-
Horvath, L.G.1
-
59
-
-
0035576259
-
Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas
-
Kallakury BV, et al. Decreased expression of catenins (α and β), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer. 2001;92(11):2786-2795.
-
(2001)
Cancer
, vol.92
, Issue.11
, pp. 2786-2795
-
-
Kallakury, B.V.1
-
60
-
-
48749129835
-
Alterations in β-catenin expression and localization in prostate cancer
-
Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE. Alterations in β-catenin expression and localization in prostate cancer. Prostate. 2008;68(11):1196-1205.
-
(2008)
Prostate
, vol.68
, Issue.11
, pp. 1196-1205
-
-
Whitaker, H.C.1
Girling, J.2
Warren, A.Y.3
Leung, H.4
Mills, I.G.5
Neal, D.E.6
-
61
-
-
0034283030
-
β-Catenin affects androgen receptor transcriptional activity and ligand specificity
-
Truica CI, Byers S, Gelmann EP. β-Catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000;60(17):4709-4713.
-
(2000)
Cancer Res.
, vol.60
, Issue.17
, pp. 4709-4713
-
-
Truica, C.I.1
Byers, S.2
Gelmann, E.P.3
-
62
-
-
0041335563
-
Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: A means for inhibition of the Tcf signaling axis
-
Mulholland DJ, Read JT, Rennie PS, Cox ME, Nelson CC. Functional localization and competition between the androgen receptor and T-cell factor for nuclear β-catenin: a means for inhibition of the Tcf signaling axis. Oncogene. 2003;22(36):5602-5613.
-
(2003)
Oncogene
, vol.22
, Issue.36
, pp. 5602-5613
-
-
Mulholland, D.J.1
Read, J.T.2
Rennie, P.S.3
Cox, M.E.4
Nelson, C.C.5
-
63
-
-
0037192870
-
Linking β-catenin to androgen-signaling pathway
-
Yang F, et al. Linking β-catenin to androgen-signaling pathway. J Biol Chem. 2002;277(13):11336-11344.
-
(2002)
J Biol Chem.
, vol.277
, Issue.13
, pp. 11336-11344
-
-
Yang, F.1
-
64
-
-
0043234530
-
A direct β-catenin-independent interaction between androgen receptor and T cell factor 4
-
Amir AL, Barua M, McKnight NC, Cheng S, Yuan X, Balk SP. A direct β-catenin-independent interaction between androgen receptor and T cell factor 4. J Biol Chem. 2003;278(33):30828-30834.
-
(2003)
J Biol Chem.
, vol.278
, Issue.33
, pp. 30828-30834
-
-
Amir, A.L.1
Barua, M.2
McKnight, N.C.3
Cheng, S.4
Yuan, X.5
Balk, S.P.6
-
65
-
-
84884658963
-
Inhibition of androgen receptor and β-catenin activity in prostate cancer
-
Lee E, Madar A, David G, Garabedian MJ, Dasgupta R, Logan SK. Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc Natl Acad Sci U S A. 2013;110(39):15710-15715.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.39
, pp. 15710-15715
-
-
Lee, E.1
Madar, A.2
David, G.3
Garabedian, M.J.4
Dasgupta, R.5
Logan, S.K.6
-
66
-
-
84930591340
-
ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors
-
Nguyen LT, et al. ERG activates the YAP1 transcriptional program and induces the development of age-related prostate tumors. Cancer Cell. 2015;27(6):797-808.
-
(2015)
Cancer Cell
, vol.27
, Issue.6
, pp. 797-808
-
-
Nguyen, L.T.1
-
67
-
-
84868633053
-
Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B
-
Sun Y, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012;18(9):1359-1368.
-
(2012)
Nat Med.
, vol.18
, Issue.9
, pp. 1359-1368
-
-
Sun, Y.1
-
68
-
-
2442514340
-
Interactions between Sox9 and β-catenin control chondrocyte differentiation
-
Akiyama H, et al. Interactions between Sox9 and β-catenin control chondrocyte differentiation. Genes Dev. 2004;18(9):1072-1087.
-
(2004)
Genes Dev.
, vol.18
, Issue.9
, pp. 1072-1087
-
-
Akiyama, H.1
-
69
-
-
59149089747
-
Sox9 inhibits Wnt signaling by promoting β-catenin phosphorylation in the nucleus
-
Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting β-catenin phosphorylation in the nucleus. J Biol Chem. 2009;284(5):3323-3333.
-
(2009)
J Biol Chem.
, vol.284
, Issue.5
, pp. 3323-3333
-
-
Topol, L.1
Chen, W.2
Song, H.3
Day, T.F.4
Yang, Y.5
-
70
-
-
84872732113
-
DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases
-
Aryee MJ, et al. DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci Transl Med. 2013;5(169):169ra10.
-
(2013)
Sci Transl Med.
, vol.5
, Issue.169
, pp. 169-1610
-
-
Aryee, M.J.1
-
71
-
-
84882449183
-
APC gene hypermethylation and prostate cancer: A systematic review and meta-analysis
-
Chen Y, et al. APC gene hypermethylation and prostate cancer: a systematic review and meta-analysis. Eur J Hum Genet. 2013;21(9):929-935.
-
(2013)
Eur J Hum Genet
, vol.21
, Issue.9
, pp. 929-935
-
-
Chen, Y.1
-
72
-
-
84930225081
-
Integrative clinical genomics of advanced prostate cancer
-
Robinson D, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215-1228.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1215-1228
-
-
Robinson, D.1
-
73
-
-
27344435774
-
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, Issue.43
, pp. 15545-15550
-
-
Subramanian, A.1
-
74
-
-
53849146020
-
Model-based analysis of ChIP-Seq (MACS)
-
Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
-
(2008)
Genome Biol.
, vol.9
, Issue.9
, pp. R137
-
-
Zhang, Y.1
-
75
-
-
80052022462
-
Cistrome: An integrative platform for transcriptional regulation studies
-
Liu T, et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 2011;12(8):R83.
-
(2011)
Genome Biol.
, vol.12
, Issue.8
, pp. R83
-
-
Liu, T.1
|