메뉴 건너뛰기




Volumn 40, Issue 11, 2016, Pages

An Automatic Prediction of Epileptic Seizures Using Cloud Computing and Wireless Sensor Networks

Author keywords

Bicoherence; Bispectrum; Entropy; Epilepsy; Higher order spectral analysis (HOSA); Seizure

Indexed keywords

ACCURACY; ARTICLE; CLOUD COMPUTING; COMPUTER SECURITY; ELECTROENCEPHALOGRAPHY; GLOBAL POSITIONING SYSTEM; HUMAN; INFORMATION PROCESSING; MOBILE PHONE; PREDICTION; SEIZURE; SENSOR; WIRELESS COMMUNICATION; ALGORITHM; AMBULATORY MONITORING; EPILEPSY; GEOGRAPHIC INFORMATION SYSTEM; PATHOPHYSIOLOGY; PROCEDURES; SEIZURES; SMARTPHONE; TELEMETRY;

EID: 84988026093     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-016-0579-1     Document Type: Article
Times cited : (43)

References (61)
  • 1
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasia, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 78:87–99, 2005. doi:10.1016/j.cmpb.2004.10.009.
    • (2005) Comput. Methods Prog. Biomed. , vol.78 , pp. 87-99
    • Subasia, A.1    Ercelebi, E.2
  • 2
    • 84987988428 scopus 로고    scopus 로고
    • World Health Organization. (2015)
    • World Health Organization. http://www.who.int/mental_health/management/neurological/en/ (2015)
  • 3
    • 0034598762 scopus 로고    scopus 로고
    • Early identification of refractory epilepsy
    • COI: 1:STN:280:DC%2BD3c7gs1KqtQ%3D%3D, PID: 10660394
    • Kwan, P., and Brodie, M.J., Early identification of refractory epilepsy. N. Engl. J. Med. 342:314–319, 2000. doi:10.1056/NEJM200002033420503.
    • (2000) N. Engl. J. Med. , vol.342 , pp. 314-319
    • Kwan, P.1    Brodie, M.J.2
  • 4
    • 84930975564 scopus 로고    scopus 로고
    • Epilepsy-related deaths: An Australian survey of the experiences and needs of people bereaved by epilepsy
    • PID: 26076861
    • Bellon, M., Panelli, R.J., Rillotta, F., Epilepsy-related deaths: An Australian survey of the experiences and needs of people bereaved by epilepsy. Seizure 29:162–168, 2015. doi:10.1016/j.seizure.2015.05.007.
    • (2015) Seizure , vol.29 , pp. 162-168
    • Bellon, M.1    Panelli, R.J.2    Rillotta, F.3
  • 5
    • 84988010884 scopus 로고    scopus 로고
    • Shoeb, A.: Application of machine learning to epileptic seizure onset detection and treatment (Ph.D. thesis). Harvard University-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. (2009)
    • Shoeb, A.: Application of machine learning to epileptic seizure onset detection and treatment (Ph.D. thesis). Harvard University-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/54669 (2009)
  • 7
    • 77956882701 scopus 로고    scopus 로고
    • Wireless sensor networks for healthcare: a survey
    • Alemdar, H., and Ersoy, C., Wireless sensor networks for healthcare: a survey. Comput. Netw. 54:2688–2710, 2010. doi:10.1016/j.comnet.2010.05.003.
    • (2010) Comput. Netw. , vol.54 , pp. 2688-2710
    • Alemdar, H.1    Ersoy, C.2
  • 9
    • 63649117166 scopus 로고    scopus 로고
    • Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility
    • Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I., Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 2: 599–616, 2009. doi:10.1016/j.future.2008.12.001.
    • (2009) Futur. Gener. Comput. Syst. , vol.2 , pp. 599-616
    • Buyya, R.1    Yeo, C.S.2    Venugopal, S.3    Broberg, J.4    Brandic, I.5
  • 10
    • 84897560767 scopus 로고    scopus 로고
    • Integration of cloud computing and body sensor networks
    • Fortino, G., and Pathan, M., Integration of cloud computing and body sensor networks. Futur. Gener. Comput. Syst. 35:57–61, 2014. doi:10.1016/j.future.2014.02.001.
    • (2014) Futur. Gener. Comput. Syst. , vol.35 , pp. 57-61
    • Fortino, G.1    Pathan, M.2
  • 11
    • 84865067611 scopus 로고    scopus 로고
    • Failure-aware resource provisioning for hybrid cloud infrastructure
    • Javadi, B., Abawajy, J., Buyya, R., Failure-aware resource provisioning for hybrid cloud infrastructure. Parallel Distrib. Comput. 72:1318–1331, 2012. doi:10.1016/j.jpdc.2012.06.012.
    • (2012) Parallel Distrib. Comput. , vol.72 , pp. 1318-1331
    • Javadi, B.1    Abawajy, J.2    Buyya, R.3
  • 12
    • 80052785789 scopus 로고    scopus 로고
    • An autonomic cloud environment for hosting ECG data analysis services
    • Pandey, S., Voorsluys, W., Niu, S., Khandoker, A., Buyya, R., An autonomic cloud environment for hosting ECG data analysis services. Futur. Gener. Comput. Syst. 28:147–154, 2012. doi:10.1016/j.future.2011.04.022.
    • (2012) Futur. Gener. Comput. Syst. , vol.28 , pp. 147-154
    • Pandey, S.1    Voorsluys, W.2    Niu, S.3    Khandoker, A.4    Buyya, R.5
  • 13
    • 84867800053 scopus 로고    scopus 로고
    • Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y.: Secure and scalable cloud-based architecture for e-health wireless sensor networks. In: 21st International conference on computer communications and networks. (2012)
    • Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y.: Secure and scalable cloud-based architecture for e-health wireless sensor networks. In: 21st International conference on computer communications and networks. https://hal.archives-ouvertes.fr/hal-00695956 (2012)
  • 14
    • 84897584781 scopus 로고    scopus 로고
    • CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living
    • Forkan, A., Khalil, I., Tari, Z., CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Futur. Gener. Comput. Syst. 35:114–127, 2014. doi:10.1016/j.future.2013.07.009.
    • (2014) Futur. Gener. Comput. Syst. , vol.35 , pp. 114-127
    • Forkan, A.1    Khalil, I.2    Tari, Z.3
  • 15
    • 84897584725 scopus 로고    scopus 로고
    • BodyCloud: A SaaS approach for community body sensor networks
    • Fortino, G., Parisi, D., Pirrone, V., Fatta, D.G., BodyCloud: A SaaS approach for community body sensor networks. Futur. Gener. Comput. Syst. 35:62–79, 2014. doi:10.1016/j.future.2013.12.015.
    • (2014) Futur. Gener. Comput. Syst. , vol.35 , pp. 62-79
    • Fortino, G.1    Parisi, D.2    Pirrone, V.3    Fatta, D.G.4
  • 16
    • 84914115449 scopus 로고    scopus 로고
    • Cloudlet-based efficient data collection in wireless body area networks
    • Quwaider, M., and Jararweh, Y., Cloudlet-based efficient data collection in wireless body area networks. Simul. Model. Pract. Theory 50:57–71, 2015. doi:10.1016/j.simpat.2014.06.015.
    • (2015) Simul. Model. Pract. Theory , vol.50 , pp. 57-71
    • Quwaider, M.1    Jararweh, Y.2
  • 17
    • 84954243971 scopus 로고    scopus 로고
    • Healing on the cloud: secure cloud architecture for medical wireless sensor networks
    • Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y., Healing on the cloud: secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55: 266–277, 2016. doi:10.1016/j.future.2015.01.009.
    • (2016) Futur. Gener. Comput. Syst. , vol.55 , pp. 266-277
    • Lounis, A.1    Hadjidj, A.2    Bouabdallah, A.3    Challal, Y.4
  • 18
    • 84988006264 scopus 로고    scopus 로고
    • J.: EEG Signal processing John Wiley & Sons
    • Sanei, S., and Chambers, J.: EEG Signal processing John Wiley & Sons (2007)
    • (2007) and Chambers
    • Sanei, S.1
  • 19
    • 77949634303 scopus 로고    scopus 로고
    • Djordjevic, V., Reljin, N., Gerla, V., Lhotska, L., Krajca, V.: Feature extraction and classification of EEG sleep recordings in newborns. In: Proceedings of the 9th IEEE international conference on information technology and applications in biomedicine. doi: (2009)
    • Djordjevic, V., Reljin, N., Gerla, V., Lhotska, L., Krajca, V.: Feature extraction and classification of EEG sleep recordings in newborns. In: Proceedings of the 9th IEEE international conference on information technology and applications in biomedicine. doi:10.1109/ITAB.2009.5394439 (2009)
  • 20
    • 77953117067 scopus 로고    scopus 로고
    • Bedeeuzzaman, M., Farooq, O., Khan, Y.U.: Automatic seizure detection using higher order moments. In: Proceedings of the international conference on recent trends in information telecommunication and computing. doi: (2010)
    • Bedeeuzzaman, M., Farooq, O., Khan, Y.U.: Automatic seizure detection using higher order moments. In: Proceedings of the international conference on recent trends in information telecommunication and computing. doi:10.1109/ITC.2010.29 (2010)
  • 21
    • 84891600132 scopus 로고    scopus 로고
    • Automatic detection of seizure onset in pediatric EEG
    • Khan, Y.U., Farooq, O., Sharma, P., Automatic detection of seizure onset in pediatric EEG. Int. J. Embed. Syst. Appl. (IJESA) 2:81–89, 2012. doi:10.5121/ijesa.2012.2309.
    • (2012) Int. J. Embed. Syst. Appl. (IJESA) , vol.2 , pp. 81-89
    • Khan, Y.U.1    Farooq, O.2    Sharma, P.3
  • 22
    • 0742289140 scopus 로고    scopus 로고
    • Comparison of quantitative EEG characteristics of quiet and active sleep in newborns
    • PID: 14607349
    • Paul, K., Krajca, V., Rothc, Z., Melichar, J., Petrnek, S., Comparison of quantitative EEG characteristics of quiet and active sleep in newborns. Sleep Medicine 4:543–552, 2003. doi:10.1016/j.sleep.2003.08.008.
    • (2003) Sleep Medicine , vol.4 , pp. 543-552
    • Paul, K.1    Krajca, V.2    Rothc, Z.3    Melichar, J.4    Petrnek, S.5
  • 23
    • 24644444651 scopus 로고    scopus 로고
    • Detecting temporal lobe seizures from scalp EEG recordings: A comparison of various features
    • PID: 16099210
    • van Putten, M.J., Kind, T., Visser, F., Lagerburg, V., Detecting temporal lobe seizures from scalp EEG recordings: A comparison of various features. Clin. Neurophysiol. 116:2480–2489, 2005. doi:10.1016/j.clinph.2005.06.017.
    • (2005) Clin. Neurophysiol. , vol.116 , pp. 2480-2489
    • van Putten, M.J.1    Kind, T.2    Visser, F.3    Lagerburg, V.4
  • 25
    • 36549062615 scopus 로고    scopus 로고
    • A multistage knowledge-based system for EEG seizure detection in newborn infants
    • PID: 17905654
    • Aarabi, A., Grebe, R., Wallois, F., A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118:2781–2797, 2007. doi:10.1016/j.clinph.2007.08.012.
    • (2007) Clin. Neurophysiol. , vol.118 , pp. 2781-2797
    • Aarabi, A.1    Grebe, R.2    Wallois, F.3
  • 26
    • 77949849355 scopus 로고    scopus 로고
    • Gerla, V., Macas, M., Lhotska, L., Djordjevic, V., Krajca, V., Paul, K.: Wards clustering method for distinction between neonatal sleep stages. In: Dssel, O., and Schlegel, W. (Eds.) doi:, Vol. 25, pp. 786–789 (2009)
    • Gerla, V., Macas, M., Lhotska, L., Djordjevic, V., Krajca, V., Paul, K.: Wards clustering method for distinction between neonatal sleep stages. In: Dssel, O., and Schlegel, W. (Eds.) doi:10.1007/978-3-642-03885-3, Vol. 25, pp. 786–789 (2009)
  • 27
    • 0037387643 scopus 로고    scopus 로고
    • Detection of seizure precursors from depth-EEG using a sign periodogram transform
    • Niederhauser, J.J., Esteller, R., Echauz, J., Vachtsevanos, G., Litt, B., Detection of seizure precursors from depth-EEG using a sign periodogram transform. IEEE Trans. Biomed. Eng. 51:449–458, 2003. doi:10.1109/TBME.2003.809497.
    • (2003) IEEE Trans. Biomed. Eng. , vol.51 , pp. 449-458
    • Niederhauser, J.J.1    Esteller, R.2    Echauz, J.3    Vachtsevanos, G.4    Litt, B.5
  • 28
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • Ocak, H., Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 88:1858–1867, 2008. doi:10.1016/j.sigpro.2008.01.026.
    • (2008) Signal Process. , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 29
    • 58549111381 scopus 로고    scopus 로고
    • Combined neural network model employing wavelet coefficients for EEG signals classification
    • Ubeyli, E.D., Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process. 19:297–308, 2009. doi:10.1016/j.dsp.2008.07.004.
    • (2009) Digital Signal Process. , vol.19 , pp. 297-308
    • Ubeyli, E.D.1
  • 30
    • 84892542405 scopus 로고    scopus 로고
    • Signal processing techniques applied to human sleep EEG signals - A review
    • Fakhr, S.M., Torbati, M.M., Hill, M., Hill, C.M., White, P.R., Signal processing techniques applied to human sleep EEG signals - A review. Biomed. Signal Process. Control 10:21–33, 2014. doi:10.1016/j.bspc.2013.12.003.
    • (2014) Biomed. Signal Process. Control , vol.10 , pp. 21-33
    • Fakhr, S.M.1    Torbati, M.M.2    Hill, M.3    Hill, C.M.4    White, P.R.5
  • 32
    • 84930647580 scopus 로고    scopus 로고
    • An automatic mobile-health based approach for EEG epileptic seizures detection
    • Menshawy, E.M., Benharref, A., Serhani, M., An automatic mobile-health based approach for EEG epileptic seizures detection. Expert Syst. Appl. 42:7157–7174, 2015. doi:10.1016/j.eswa.2015.04.068.
    • (2015) Expert Syst. Appl. , vol.42 , pp. 7157-7174
    • Menshawy, E.M.1    Benharref, A.2    Serhani, M.3
  • 33
    • 84892607913 scopus 로고    scopus 로고
    • An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments
    • PID: 24403436
    • Hervas, R., Bravo, J., Fontecha, J., An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments. IEEE J. Biomed. Health Inform. 18:368–374, 2014. doi:10.1109/JBHI.2013.2266480.
    • (2014) IEEE J. Biomed. Health Inform. , vol.18 , pp. 368-374
    • Hervas, R.1    Bravo, J.2    Fontecha, J.3
  • 34
    • 35348925885 scopus 로고    scopus 로고
    • Predictability analysis of absence seizures with permutation entropy
    • PID: 17870413
    • Li, X., Ouyang, G., Richards, D.A., Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77:70–74, 2007. doi:10.1016/j.eplepsyres.2007.08.002.
    • (2007) Epilepsy Res. , vol.77 , pp. 70-74
    • Li, X.1    Ouyang, G.2    Richards, D.A.3
  • 35
    • 84984590575 scopus 로고    scopus 로고
    • Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy
    • PID: 14629902
    • van Drongelen, W., Nayak, S., Frim, D.M., Kohrman, M.H., Towle, V.L., Lee, H.C., et al., Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr. Neurol. 29:207–213, 2003. doi:10.1016/S0887-8994(03)00145-0.
    • (2003) Pediatr. Neurol. , vol.29 , pp. 207-213
    • van Drongelen, W.1    Nayak, S.2    Frim, D.M.3    Kohrman, M.H.4    Towle, V.L.5    Lee, H.C.6
  • 36
    • 33947608803 scopus 로고    scopus 로고
    • Entropy changes in brain function
    • PID: 17234291
    • Rosso, O.A., Entropy changes in brain function. Int. J. Psychophysiol. 64: 75–80, 2007. doi:10.1016/j.ijpsycho.2006.07.010.
    • (2007) Int. J. Psychophysiol. , vol.64 , pp. 75-80
    • Rosso, O.A.1
  • 37
    • 23844525865 scopus 로고    scopus 로고
    • Approximate entropy of the electroencephalogramin healthy awake subjects and absence epilepsy patients
    • PID: 16128154
    • Burioka, N., Cornelissen, G., Maegaki, Y., Halberg, F., Kaplanm, D.T., Miyata, M., et al., Approximate entropy of the electroencephalogramin healthy awake subjects and absence epilepsy patients. Clin. EEG Neurosci. 36:188–193, 2005. doi:10.1177/155005940503600309.
    • (2005) Clin. EEG Neurosci. , vol.36 , pp. 188-193
    • Burioka, N.1    Cornelissen, G.2    Maegaki, Y.3    Halberg, F.4    Kaplanm, D.T.5    Miyata, M.6
  • 38
    • 58149159364 scopus 로고    scopus 로고
    • Analysis of epileptic EEG signals using higher order spectra
    • COI: 1:STN:280:DC%2BD1M%2FhtlGquw%3D%3D, PID: 19116853
    • Chua, K.C., Chandran, V., Acharya, R., Lim, C.M., Analysis of epileptic EEG signals using higher order spectra. J. Med. Eng. Technol. 33:42–50, 2009. doi:10.1080/03091900701559408.
    • (2009) J. Med. Eng. Technol. , vol.33 , pp. 42-50
    • Chua, K.C.1    Chandran, V.2    Acharya, R.3    Lim, C.M.4
  • 39
    • 84961658187 scopus 로고    scopus 로고
    • Resource efficient data compression algorithms for demanding, WSN based biomedical applications
    • PID: 26556645
    • Antonopoulos, C.P., and Voros, N.S., Resource efficient data compression algorithms for demanding, WSN based biomedical applications. J. Biomed. Inform. 59:1–14, 2016. doi:10.1016/j.jbi.2015.10.015.
    • (2016) J. Biomed. Inform. , vol.59 , pp. 1-14
    • Antonopoulos, C.P.1    Voros, N.S.2
  • 40
    • 84890925214 scopus 로고    scopus 로고
    • CBM: Online Strategies on Cost-Aware buffer management for mobile video streaming
    • He, J., Xue, Z., Wu, D., Wu, D.O., Wen, Y., CBM: Online Strategies on Cost-Aware buffer management for mobile video streaming. IEEE Trans. Multimedia 16:242–252, 2014. doi:10.1109/TMM.2013.2284894.
    • (2014) IEEE Trans. Multimedia , vol.16 , pp. 242-252
    • He, J.1    Xue, Z.2    Wu, D.3    Wu, D.O.4    Wen, Y.5
  • 41
    • 84958044135 scopus 로고    scopus 로고
    • Sareen, S., Sood, S.K., Gupta, S.K.: Towards the Design of a Secure Data Outsourcing using Fragmentation and Secret Sharing Scheme. Information Security Journal: A Global Perspective. doi: (2016)
    • Sareen, S., Sood, S.K., Gupta, S.K.: Towards the Design of a Secure Data Outsourcing using Fragmentation and Secret Sharing Scheme. Information Security Journal: A Global Perspective. doi:10.1080/19393555.2015.1134732 (2016)
  • 42
    • 67650522224 scopus 로고    scopus 로고
    • A secure e-Health architecture based on the appliance of pseudonymization
    • Riedl, B., Grascher, V., Neubauer, T., A secure e-Health architecture based on the appliance of pseudonymization. J. Softw. 3:23–32, 2008. doi:10.1.1.110.2237.
    • (2008) J. Softw. , vol.3 , pp. 23-32
    • Riedl, B.1    Grascher, V.2    Neubauer, T.3
  • 43
    • 84864091173 scopus 로고    scopus 로고
    • Health Records and the Cloud Computing Paradigm from a Privacy Perspective
    • Stingl, C., and Slamanig, D., Health Records and the Cloud Computing Paradigm from a Privacy Perspective. J. Healthcare Eng. 2:487–508, 2011. doi:10.1260/2040-2295.2.4.487.
    • (2011) J. Healthcare Eng. , vol.2 , pp. 487-508
    • Stingl, C.1    Slamanig, D.2
  • 44
    • 84987973646 scopus 로고    scopus 로고
    • Google Maps. (2016)
    • Google Maps. https://www.google.co.in/maps (2016)
  • 45
    • 0036158024 scopus 로고    scopus 로고
    • Higher order statistics and neural network for tremor recognition
    • PID: 12066882
    • Jakubowski, J., Kwiatos, K., Chwaleba, A., Osowski, S., Higher order statistics and neural network for tremor recognition. IEEE Trans. Biomed. Eng. 49:152–159, 2002. doi:10.1109/10.979354.
    • (2002) IEEE Trans. Biomed. Eng. , vol.49 , pp. 152-159
    • Jakubowski, J.1    Kwiatos, K.2    Chwaleba, A.3    Osowski, S.4
  • 46
    • 0031999491 scopus 로고    scopus 로고
    • Stationarity index for abrupt changes detection in the time-frequency plane
    • Laurent, H., and Doncarli, C., Stationarity index for abrupt changes detection in the time-frequency plane. IEEE Signal Process Lett. 5:43–45, 1998. doi:10.1109/97.659547.
    • (1998) IEEE Signal Process Lett. , vol.5 , pp. 43-45
    • Laurent, H.1    Doncarli, C.2
  • 47
    • 0031031184 scopus 로고    scopus 로고
    • Bispectrum analysis of visually evoked potentials
    • COI: 1:STN:280:DyaK2s3htVyntQ%3D%3D, PID: 9058583
    • Husar, P., and Henning, G., Bispectrum analysis of visually evoked potentials. IEEE Eng. Med. Biol. Mag. 16:57–63, 1997. doi:10.1109/51.566155.
    • (1997) IEEE Eng. Med. Biol. Mag. , vol.16 , pp. 57-63
    • Husar, P.1    Henning, G.2
  • 48
    • 85032751474 scopus 로고
    • Signal processing with higher-order spectra
    • Nikias, C.L., and Mendel, J.M., Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10:10–37, 1993. doi:10.1109/79.221324.
    • (1993) IEEE Signal Process. Mag. , vol.10 , pp. 10-37
    • Nikias, C.L.1    Mendel, J.M.2
  • 49
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • COI: 1:STN:280:DC%2BD387gsVajsQ%3D%3D
    • Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E., Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64:061907, 2001. doi:10.1103/PhysRevE.64.061907.
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 50
    • 84986811814 scopus 로고
    • Testing for gaussianity and linearity of a stationary time series
    • Hinich, M.J., Testing for gaussianity and linearity of a stationary time series. Time Ser. Anal. 3:169–176, 1982. doi:10.1111/j.1467-9892.1982.tb00339.x.
    • (1982) Time Ser. Anal. , vol.3 , pp. 169-176
    • Hinich, M.J.1
  • 52
    • 77956930474 scopus 로고    scopus 로고
    • Canonical bicoherence analysis of dynamic EEG data
    • COI: 1:CAS:528:DC%2BC3cXnsFCnsbo%3D, PID: 19629667
    • He, H., and Thomson, D.J., Canonical bicoherence analysis of dynamic EEG data. J. Comput. Neurosci. 29:23–34, 2010. doi:10.1007/s10827-009-0177-z.
    • (2010) J. Comput. Neurosci. , vol.29 , pp. 23-34
    • He, H.1    Thomson, D.J.2
  • 53
    • 84988006266 scopus 로고    scopus 로고
    • Amazon Cloud Services. (2016)
    • Amazon Cloud Services. http://aws.amazon.com/ec2/instance-types/ (2016)
  • 54
    • 84867470401 scopus 로고    scopus 로고
    • Bao, A., Kansal, A., Choudhury, R.R., Bahl, P., Chu, D., Wolman, A.: Helping mobile Apps Bootstrap with Fewer users. In: Proceedings of the 14th International Conference on Ubiquitous Computing. doi: (2012)
    • Bao, A., Kansal, A., Choudhury, R.R., Bahl, P., Chu, D., Wolman, A.: Helping mobile Apps Bootstrap with Fewer users. In: Proceedings of the 14th International Conference on Ubiquitous Computing. doi:10.1145/2370216.2370289 (2012)
  • 55
    • 28544442349 scopus 로고    scopus 로고
    • A multilayer perceptron-based medical decision support system for heart disease diagnosis
    • Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q., A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 30:272–281, 2006. doi:10.1016/j.eswa.2005.07.022.
    • (2006) Expert Syst. Appl. , vol.30 , pp. 272-281
    • Yan, H.1    Jiang, Y.2    Zheng, J.3    Peng, C.4    Li, Q.5
  • 56
    • 84987973612 scopus 로고    scopus 로고
    • Bates, D.M., and Watts, D.G.: Nonlinear regression: iterative estimation and linear approximations John Wiley & Sons. doi: (1988)
    • Bates, D.M., and Watts, D.G.: Nonlinear regression: iterative estimation and linear approximations John Wiley & Sons. doi:10.1002/9780470316757.ch2 (1988)
  • 57
    • 84894083229 scopus 로고    scopus 로고
    • Application of linear regression classification to low-dimensional datasets
    • Ko, M., and Barkana, A., Application of linear regression classification to low-dimensional datasets. Neurocomputing 131:331–335, 2014. doi:10.1016/j.neucom.2013.10.009.
    • (2014) Neurocomputing , vol.131 , pp. 331-335
    • Ko, M.1    Barkana, A.2
  • 58
    • 84950968334 scopus 로고
    • Least median of square regression
    • Rousseeuw, P.J., Least median of square regression. Am. Stat. Assoc. 79:871–880, 1984.
    • (1984) Am. Stat. Assoc. , vol.79 , pp. 871-880
    • Rousseeuw, P.J.1
  • 60
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32:1084–1093, 2007. doi:10.1016/j.eswa.2006.02.005.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 61
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424, 2001. doi:10.1093/bioinformatics/16.5.412.
    • (2001) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.