메뉴 건너뛰기




Volumn , Issue , 2010, Pages 159-163

Automatic seizure detection using higher order moments

Author keywords

Classification; Electro encephalogram (EEG); Epilepsy; Feature extraction

Indexed keywords

AUTOMATIC DETECTION; CLASSIFICATION; CLINICAL DATA; EEG SIGNALS; EPILEPTIC PATIENTS; HIGHER ORDER; HIGHER ORDER MOMENTS; LONG TERM; METHOD OF ANALYSIS; ON TIME; SEIZURE DETECTION; STATISTICAL FEATURES;

EID: 77953117067     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITC.2010.29     Document Type: Conference Paper
Times cited : (35)

References (16)
  • 2
    • 34548695416 scopus 로고    scopus 로고
    • Young patients with focal seizures may have the primary motor area for the hand in the post central gyrus
    • September
    • A. Haseeb et al., "Young patients with focal seizures may have the primary motor area for the hand in the post central gyrus", Epilepsy Res., Vol. 76(2-3), pp.131-139, September 2007.
    • (2007) Epilepsy Res. , vol.76 , Issue.2-3 , pp. 131-139
    • Haseeb, A.1
  • 3
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG
    • J Gotman., "Automatic recognition of epileptic seizures in the EEG," Electroenceph. Clin. Neurophysiol., vol. 54,pp. 530-540, 1982.
    • (1982) Electroenceph. Clin. Neurophysiol. , vol.54 , pp. 530-540
    • Gotman, J.1
  • 4
    • 0025049825 scopus 로고
    • Automatic seizure detection: Improvements and evaluation
    • J.Gotman., "Automatic seizure detection: improvements and evaluation," Electroenceph.Clin.Neurophysiol.,vol. 76,pp. 317-324, 1990.
    • (1990) Electroenceph.Clin.Neurophysiol. , vol.76 , pp. 317-324
  • 6
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • N.F. Guler, E.D. Ubeylib, I. Guler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification," Expert Systems with Applications vol. 29, pp. 506-514, 2005.
    • (2005) Expert Systems with Applications , vol.29 , pp. 506-514
    • Guler, N.F.1    Ubeylib, E.D.2    Guler, I.3
  • 9
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A.Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Systems with Applications, vol. 32, no. 4, pp. 1084-1093, 2007.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 12
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state," Phys. Rev. E, 64, pp.(061907)1-8,2001.
    • (2001) Phys. Rev. E , vol.64 , pp. 06190718
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 13
    • 0842310823 scopus 로고    scopus 로고
    • A neural-network-based detection of epilepsy
    • V. P. Nigam and D. Graupe, "A neural-network-based detection of epilepsy," Neurological Research, vol. 26, no. 1, pp. 55-60, 2004.
    • (2004) Neurological Research , vol.26 , Issue.1 , pp. 55-60
    • Nigam, V.P.1    Graupe, D.2
  • 14
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • V. Srinivasan, C. Eswaran, and A. N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features," Journal of Medical Systems, vol. 29, no. 6, pp. 647-660, 2005.
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, A.N.3
  • 16
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat and S. Güneş, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Applied Mathematics and Computation, vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Güneş, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.