메뉴 건너뛰기




Volumn 8, Issue 2, 2016, Pages

3D-printed microfluidic devices

Author keywords

3D printing; additive manufacturing; lab on A chip; low cost fabrication; microfluidics

Indexed keywords

3D PRINTERS; COST EFFECTIVENESS; COSTS; FABRICATION; FLUIDIC DEVICES; GLASS BONDING; LAB-ON-A-CHIP;

EID: 84987653497     PISSN: 17585082     EISSN: 17585090     Source Type: Journal    
DOI: 10.1088/1758-5090/8/2/022001     Document Type: Review
Times cited : (288)

References (84)
  • 1
    • 84897557208 scopus 로고    scopus 로고
    • Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
    • 3240-53
    • Gross B C et al 2014 Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences Anal. Chem. 86 3240-53
    • (2014) Anal. Chem. , vol.86 , pp. 3240-3253
    • Gross, B.C.1
  • 2
    • 84896508793 scopus 로고    scopus 로고
    • Cost-effective three-dimensional printing of visibly transparent microchips within minutes
    • 3124-30
    • Shallan A I et al 2014 Cost-effective three-dimensional printing of visibly transparent microchips within minutes Anal. Chem. 86 3124-30
    • (2014) Anal. Chem. , vol.86 , pp. 3124-3130
    • Shallan, A.I.1
  • 5
    • 84943303363 scopus 로고    scopus 로고
    • Smart-phone based magnetic levitation for measuring densities
    • Knowlton S, Yu C H, Jain N, Ghiran I C and Tasoglu S 2015 Smart-phone based magnetic levitation for measuring densities PLoS ONE 10 e0134400
    • (2015) PLoS ONE , vol.10 , pp. e0134400
    • Knowlton, S.1    Yu, C.H.2    Jain, N.3    Ghiran, I.C.4    Tasoglu, S.5
  • 6
  • 7
    • 84888783450 scopus 로고    scopus 로고
    • 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots
    • 421-7
    • Krejcova L et al 2014 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots Biosens. Bioelectron. 54 421-7
    • (2014) Biosens. Bioelectron. , vol.54 , pp. 421-427
    • Krejcova, L.1
  • 8
    • 84926312318 scopus 로고    scopus 로고
    • 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section
    • Lee W et al 2015 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section Sci. Rep. 5 7717
    • (2015) Sci. Rep. , vol.5 , pp. 7717
    • Lee, W.1
  • 10
    • 84938907414 scopus 로고    scopus 로고
    • Advances in nanotechnology and microfluidics for human papillomavirus diagnostics
    • 161-78
    • Tasoglu S et al 2015 Advances in nanotechnology and microfluidics for human papillomavirus diagnostics Proc. IEEE 103 161-78
    • (2015) Proc. IEEE , vol.103 , pp. 161-178
    • Tasoglu, S.1
  • 11
    • 84931269554 scopus 로고    scopus 로고
    • Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips
    • 9-18
    • Chan H N et al 2015 Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips Microfluidics Nanofluidics 19 9-18
    • (2015) Microfluidics Nanofluidics , vol.19 , pp. 9-18
    • Chan, H.N.1
  • 12
    • 84865202010 scopus 로고    scopus 로고
    • Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices
    • 3267-71
    • Kitson P J et al 2012 Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices Lab Chip 12 3267-71
    • (2012) Lab Chip , vol.12 , pp. 3267-3271
    • Kitson, P.J.1
  • 13
    • 84923793028 scopus 로고    scopus 로고
    • 3D printed microfluidic devices with integrated valves
    • Rogers C I et al 2015 3D printed microfluidic devices with integrated valves Biomicrofluidics 9 016501
    • (2015) Biomicrofluidics , vol.9
    • Rogers, C.I.1
  • 14
    • 84928576320 scopus 로고    scopus 로고
    • Development of a 3D printer using scanning projection stereolithography
    • Lee M P et al 2015 Development of a 3D printer using scanning projection stereolithography Sci. Rep. 5 9875
    • (2015) Sci. Rep. , vol.5 , pp. 9875
    • Lee, M.P.1
  • 15
    • 84910052995 scopus 로고    scopus 로고
    • Lab-on-A-chip devices: How to close and plug the lab?
    • 156-75
    • Temiz Y et al 2015 Lab-on-A-chip devices: How to close and plug the lab? Microelectron. Eng. 132 156-75
    • (2015) Microelectron. Eng. , vol.132 , pp. 156-175
    • Temiz, Y.1
  • 16
    • 84969375488 scopus 로고    scopus 로고
    • 3D-printed microfluidics
    • 2-22
    • Au A K et al 2016 3D-printed microfluidics Angew. Chem., Int. Ed. Engl. 55 2-22
    • (2016) Angew. Chem., Int. Ed. Engl. , vol.55 , pp. 2-22
    • Au, A.K.1
  • 17
    • 84908147027 scopus 로고    scopus 로고
    • Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
    • O'Neill P et al 2014 Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications Biomicrofluidics 8 052112
    • (2014) Biomicrofluidics , vol.8
    • O'Neill, P.1
  • 18
    • 84987622361 scopus 로고    scopus 로고
    • Biological implications of lab-on-A-chip devices fabricated using multi-jetmodelling and stereolithography processes
    • International Society for Optics and Photonics
    • Zhu F et al 2015 Biological implications of lab-on-A-chip devices fabricated using multi-jetmodelling and stereolithography processes in SPIE Microtechnologies International Society for Optics and Photonics
    • (2015) SPIE Microtechnologies
    • Zhu, F.1
  • 19
    • 84959305990 scopus 로고    scopus 로고
    • 3D printing: An emerging tool for novel microfluidics and lab-on-A-chip applications
    • 1-18
    • Yazdi A A et al 2016 3D printing: an emerging tool for novel microfluidics and lab-on-A-chip applications Microfluidics Nanofluidics 20 1-18
    • (2016) Microfluidics Nanofluidics , vol.20 , pp. 1-18
    • Yazdi, A.A.1
  • 20
    • 84940047332 scopus 로고    scopus 로고
    • 3D printed microfluidics for biological applications
    • 3627-37
    • Ho C M B et al 2015 3D printed microfluidics for biological applications Lab Chip 15 3627-37
    • (2015) Lab Chip , vol.15 , pp. 3627-3637
    • Ho, C.M.B.1
  • 21
    • 82555200840 scopus 로고    scopus 로고
    • Let there be chip - Towards rapid prototyping of microfluidic devices: One-step manufacturing processes
    • 2681-716
    • Waldbaur A et al 2011 Let there be chip - towards rapid prototyping of microfluidic devices: one-step manufacturing processes Anal. Methods 3 2681-716
    • (2011) Anal. Methods , vol.3 , pp. 2681-2716
    • Waldbaur, A.1
  • 22
    • 0003256215 scopus 로고
    • Apparatus for production of three-dimensional objects by stereolithography
    • US Patent No. 4,575,330
    • Hull C W 1986 Apparatus for production of three-dimensional objects by stereolithography Google Patents, US Patent No. 4,575,330
    • (1986) Google Patents
    • Hull, C.W.1
  • 23
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • 6121-30
    • Melchels F P, Feijen J and Grijpma D W 2010 A review on stereolithography and its applications in biomedical engineering Biomaterials 31 6121-30
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 24
    • 84878338124 scopus 로고    scopus 로고
    • Digital micromirror device projection printing system for meniscus tissue engineering
    • 7218-26
    • Grogan S P et al 2013 Digital micromirror device projection printing system for meniscus tissue engineering Acta Biomaterialia 9 7218-26
    • (2013) Acta Biomaterialia , vol.9 , pp. 7218-7226
    • Grogan, S.P.1
  • 25
    • 84903496986 scopus 로고    scopus 로고
    • Microstereolithography
    • (Berlin: Springer) pp 81-112
    • Bertsch A and Renaud P 2011 Microstereolithography Stereolithography (Berlin: Springer) pp 81-112
    • (2011) Stereolithography , pp. 81-112
    • Bertsch, A.1    Renaud, P.2
  • 26
    • 0042411070 scopus 로고    scopus 로고
    • Increased accuracy by using dynamic finite element method in the constrain-surface stereolithography system
    • 191-6
    • Huang Y-M, Jeng J-Y and Jiang C-P 2003 Increased accuracy by using dynamic finite element method in the constrain-surface stereolithography system J. Mater. Process. Technol. 140 191-6
    • (2003) J. Mater. Process. Technol. , vol.140 , pp. 191-196
    • Huang, Y.-M.1    Jeng, J.-Y.2    Jiang, C.-P.3
  • 27
    • 0002003927 scopus 로고    scopus 로고
    • Static micromixers based on large-scale industrial mixer geometry
    • 56-60
    • Bertsch A et al 2001 Static micromixers based on large-scale industrial mixer geometry Lab Chip 1 56-60
    • (2001) Lab Chip , vol.1 , pp. 56-60
    • Bertsch, A.1
  • 28
    • 78650156290 scopus 로고    scopus 로고
    • Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length
    • 100-3
    • Lim T W et al 2011 Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length Lab Chip 11 100-3
    • (2011) Lab Chip , vol.11 , pp. 100-103
    • Lim, T.W.1
  • 29
    • 58149478356 scopus 로고    scopus 로고
    • Microreplication and design of biological architectures using dynamic-mask multiphoton lithography
    • 120-5
    • Nielson R, Kaehr B and Shear J B 2009 Microreplication and design of biological architectures using dynamic-mask multiphoton lithography Small 5 120-5
    • (2009) Small , vol.5 , pp. 120-125
    • Nielson, R.1    Kaehr, B.2    Shear, J.B.3
  • 30
    • 0006540402 scopus 로고
    • Apparatus and method for creating three-dimensional objects
    • US Patent No. 5,121,329
    • Crump S S 1992 Apparatus and method for creating three-dimensional objects Google Patents, US Patent No. 5,121,329
    • (1992) Google Patents
    • Crump, S.S.1
  • 31
    • 0032188397 scopus 로고    scopus 로고
    • A comparison of rapid prototyping technologies
    • 1257-87
    • Pham D and Gault R 1998 A comparison of rapid prototyping technologies Int. J. Mach. Tools. Manuf. 38 1257-87
    • (1998) Int. J. Mach. Tools. Manuf. , vol.38 , pp. 1257-1287
    • Pham, D.1    Gault, R.2
  • 32
    • 67649395515 scopus 로고    scopus 로고
    • Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method
    • 4243-52
    • Sood A K, Ohdar R and Mahapatra S 2009 Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method Mater. Des. 30 4243-52
    • (2009) Mater. Des. , vol.30 , pp. 4243-4252
    • Sood, A.K.1    Ohdar, R.2    Mahapatra, S.3
  • 33
    • 84860255597 scopus 로고    scopus 로고
    • Integrated 3D-printed reactionware for chemical synthesis and analysis
    • 349-54
    • Symes M D et al 2012 Integrated 3D-printed reactionware for chemical synthesis and analysis Nat. Chem. 4 349-54
    • (2012) Nat. Chem. , vol.4 , pp. 349-354
    • Symes, M.D.1
  • 34
    • 84924972351 scopus 로고    scopus 로고
    • Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt
    • 1736-41
    • Gelber M K and Bhargava R 2015 Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt Lab Chip 15 1736-41
    • (2015) Lab Chip , vol.15 , pp. 1736-1741
    • Gelber, M.K.1    Bhargava, R.2
  • 35
    • 0034773430 scopus 로고    scopus 로고
    • Inkjet printing for materials and devices
    • 3299-305
    • Calvert P 2001 Inkjet printing for materials and devices Chem. Mater. 13 3299-305
    • (2001) Chem. Mater. , vol.13 , pp. 3299-3305
    • Calvert, P.1
  • 36
    • 84885821384 scopus 로고    scopus 로고
    • Apparatus and method for three-dimensional model printing
    • Gothait H 2001 Apparatus and method for three-dimensional model printing Google Patents
    • (2001) Google Patents
    • Gothait, H.1
  • 37
    • 84901022826 scopus 로고    scopus 로고
    • 3D printed microfluidic devices with integrated versatile and reusable electrodes
    • 2023-32
    • Erkal J L et al 2014 3D printed microfluidic devices with integrated versatile and reusable electrodes Lab Chip 14 2023-32
    • (2014) Lab Chip , vol.14 , pp. 2023-2032
    • Erkal, J.L.1
  • 38
    • 84910144852 scopus 로고    scopus 로고
    • The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications
    • 4616-28
    • Begolo S et al 2014 The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications Lab Chip 14 4616-28
    • (2014) Lab Chip , vol.14 , pp. 4616-4628
    • Begolo, S.1
  • 39
    • 84928738389 scopus 로고    scopus 로고
    • 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR
    • 2049-54
    • Causier A et al 2015 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR Lab Chip 15 2049-54
    • (2015) Lab Chip , vol.15 , pp. 2049-2054
    • Causier, A.1
  • 40
    • 78650628634 scopus 로고    scopus 로고
    • 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development
    • 291-4
    • Bonyár A et al 2010 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development Procedia Eng. 5 291-4
    • (2010) Procedia Eng. , vol.5 , pp. 291-294
    • Bonyár, A.1
  • 41
    • 84879201823 scopus 로고    scopus 로고
    • A 3D printed fluidic device that enables integrated features
    • 5622-6
    • Anderson K B et al 2013 A 3D printed fluidic device that enables integrated features Anal. Chem. 85 5622-6
    • (2013) Anal. Chem. , vol.85 , pp. 5622-5626
    • Anderson, K.B.1
  • 42
    • 84890336466 scopus 로고    scopus 로고
    • PDMS lab-on-A-chip fabrication using 3D printed templates
    • 424-30
    • Comina G, Suska A and Filippini D 2013 PDMS lab-on-A-chip fabrication using 3D printed templates Lab Chip 14 424-30
    • (2013) Lab Chip , vol.14 , pp. 424-430
    • Comina, G.1    Suska, A.2    Filippini, D.3
  • 43
    • 84934889940 scopus 로고    scopus 로고
    • Polymer coatings in 3D printed fluidic device channels for improved cellular adherence prior to electrical lysis
    • 6335-41
    • Gross B C et al 2015 Polymer coatings in 3D printed fluidic device channels for improved cellular adherence prior to electrical lysis Anal. Chem. 87 6335-41
    • (2015) Anal. Chem. , vol.87 , pp. 6335-6341
    • Gross, B.C.1
  • 44
    • 84904321215 scopus 로고    scopus 로고
    • Low cost lab-on-A-chip prototyping with a consumer grade 3D printer
    • 2978-82
    • Comina G, Suska A and Filippini D 2014 Low cost lab-on-A-chip prototyping with a consumer grade 3D printer Lab Chip 14 2978-82
    • (2014) Lab Chip , vol.14 , pp. 2978-2982
    • Comina, G.1    Suska, A.2    Filippini, D.3
  • 45
    • 84923005944 scopus 로고    scopus 로고
    • 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients
    • 1-8
    • Kamei K I et al 2015 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients Biomed. Microdevices 17 1-8
    • (2015) Biomed. Microdevices , vol.17 , pp. 1-8
    • Kamei, K.I.1
  • 46
    • 84923666988 scopus 로고    scopus 로고
    • Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing
    • Donvito L et al 2015 Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing J. Micromech. Microeng. 25 035013
    • (2015) J. Micromech. Microeng. , vol.25 , Issue.3
    • Donvito, L.1
  • 47
    • 84907662314 scopus 로고    scopus 로고
    • A 3D-printed microcapillary assembly for facile double emulsion generation
    • 4178-82
    • Martino C, Berger S and Wootton R C 2014 A 3D-printed microcapillary assembly for facile double emulsion generation Lab Chip 14 4178-82
    • (2014) Lab Chip , vol.14 , pp. 4178-4182
    • Martino, C.1    Berger, S.2    Wootton, R.C.3
  • 48
    • 84913570454 scopus 로고    scopus 로고
    • Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles
    • Chen Q L, Liu Z and Shum H C 2014 Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles Biomicrofluidics 8 064112
    • (2014) Biomicrofluidics , vol.8
    • Chen, Q.L.1    Liu, Z.2    Shum, H.C.3
  • 49
    • 84860255597 scopus 로고    scopus 로고
    • Integrated 3D-printed reactionware for chemical synthesis and analysis
    • 349-54
    • Symes M D et al 2012 Integrated 3D-printed reactionware for chemical synthesis and analysis Nat. Chem. 4 349-54
    • (2012) Nat. Chem. , vol.4 , pp. 349-354
    • Symes, M.D.1
  • 50
    • 84931288067 scopus 로고    scopus 로고
    • 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up
    • 12723-8
    • Kitson P J et al 2014 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up Angew. Chem., Int. Ed. Engl. 53 12723-8
    • (2014) Angew. Chem., Int. Ed. Engl. , vol.53 , pp. 12723-12728
    • Kitson, P.J.1
  • 51
    • 84904766893 scopus 로고    scopus 로고
    • Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains
    • 58-63
    • Su C K, Hsia S C and Sun Y C 2014 Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains Anal. Chim. Acta 838 58-63
    • (2014) Anal. Chim. Acta , vol.838 , pp. 58-63
    • Su, C.K.1    Hsia, S.C.2    Sun, Y.C.3
  • 52
    • 84928554016 scopus 로고    scopus 로고
    • 3D printed unibody lab-on-A-chip: Features survey and check-valves integration
    • 437-51
    • Comina G, Suska A and Filippini D 2015 3D printed unibody lab-on-A-chip: features survey and check-valves integration Micromachines 6 437-51
    • (2015) Micromachines , vol.6 , pp. 437-451
    • Comina, G.1    Suska, A.2    Filippini, D.3
  • 53
    • 84926349262 scopus 로고    scopus 로고
    • 3D-printed microfluidic automation
    • 1934-41
    • Au A K et al 2015 3D-printed microfluidic automation Lab Chip 15 1934-41
    • (2015) Lab Chip , vol.15 , pp. 1934-1941
    • Au, A.K.1
  • 54
    • 84890282745 scopus 로고    scopus 로고
    • Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings
    • 199-203
    • Paydar O et al 2014 Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings Sensors Actuators A 205 199-203
    • (2014) Sensors Actuators , vol.205 , pp. 199-203
    • Paydar, O.1
  • 55
    • 84905758109 scopus 로고    scopus 로고
    • 3D printed modules for integrated microfluidic devices
    • 32876-80
    • Lee K G et al 2014 3D printed modules for integrated microfluidic devices RSC Adv. 4 32876-80
    • (2014) RSC Adv. , vol.4 , pp. 32876-32880
    • Lee, K.G.1
  • 57
    • 84922837891 scopus 로고    scopus 로고
    • 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles
    • 457-66
    • Chudobova D et al 2015 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles Electrophoresis 36 457-66
    • (2015) Electrophoresis , vol.36 , pp. 457-466
    • Chudobova, D.1
  • 58
    • 85027941345 scopus 로고    scopus 로고
    • Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process
    • 1347-52
    • Takenaga S et al 2015 Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process Phys. Status Solidi a 212 1347-52
    • (2015) Phys. Status Solidi , vol.212 , pp. 1347-1352
    • Takenaga, S.1
  • 59
    • 84921834266 scopus 로고    scopus 로고
    • A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode
    • 2438-52
    • Vlachova J et al 2015 A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode Sensors 15 2438-52
    • (2015) Sensors , vol.15 , pp. 2438-2452
    • Vlachova, J.1
  • 60
    • 1642351161 scopus 로고    scopus 로고
    • Engineering flows in small devices: Microfluidics toward a lab-on-A-chip
    • 381-411
    • Stone H A, Stroock A D and Ajdari A 2004 Engineering flows in small devices: microfluidics toward a lab-on-A-chip Annu. Rev. Fluid Mech. 36 381-411
    • (2004) Annu. Rev. Fluid Mech. , vol.36 , pp. 381-411
    • Stone, H.A.1    Stroock, A.D.2    Ajdari, A.3
  • 61
    • 33645238778 scopus 로고    scopus 로고
    • Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
    • 281-93
    • Mata A, Fleischman A J and Roy S 2005 Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems Biomed. Microdevices 7 281-93
    • (2005) Biomed. Microdevices , vol.7 , pp. 281-293
    • Mata, A.1    Fleischman, A.J.2    Roy, S.3
  • 62
    • 84888143945 scopus 로고    scopus 로고
    • Design and additive manufacture for flow chemistry
    • 4583-90
    • Capel A J et al 2013 Design and additive manufacture for flow chemistry Lab Chip 13 4583-90
    • (2013) Lab Chip , vol.13 , pp. 4583-4590
    • Capel, A.J.1
  • 63
    • 84987603885 scopus 로고    scopus 로고
    • Additive manufacturing of lab-on-A-chip devices: Promises and challenges
    • in SPIE Micro+ Nano Materials, Devices, and Applications International Society for Optics and Photonics
    • Zhu F et al 2013 Additive manufacturing of lab-on-A-chip devices: promises and challenges in SPIE Micro+ Nano Materials, Devices, and Applications International Society for Optics and Photonics
    • (2013) SPIE Micro+ Nano Materials, Devices, and Applications
    • Zhu, F.1
  • 64
    • 84987603888 scopus 로고    scopus 로고
    • Autodesk standard clear resin is now open source, in Ember Blog. Autodesk, Inc
    • Wilhelm E 2015 Autodesk standard clear resin is now open source, in Ember Blog. Autodesk, Inc
    • (2015)
    • Wilhelm, E.1
  • 65
    • 84897477797 scopus 로고    scopus 로고
    • Research highlights: Printing the future of microfabrication
    • 1491-5
    • Tseng P et al 2014 Research highlights: printing the future of microfabrication Lab Chip 14 1491-5
    • (2014) Lab Chip , vol.14 , pp. 1491-1495
    • Tseng, P.1
  • 66
    • 84897520011 scopus 로고    scopus 로고
    • Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
    • Johnston I et al 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering J. Micromech. Microeng. 24 035017
    • (2014) J. Micromech. Microeng. , vol.24 , Issue.3
    • Johnston, I.1
  • 67
    • 84894292720 scopus 로고    scopus 로고
    • Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions
    • 242-6
    • Tymrak B, Kreiger M and Pearce J 2014 Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions Mater. Des. 58 242-6
    • (2014) Mater. Des. , vol.58 , pp. 242-246
    • Tymrak, B.1    Kreiger, M.2    Pearce, J.3
  • 68
    • 84987655326 scopus 로고    scopus 로고
    • Formlabs Clear Photopolymer Resin for Form 1+: MATERIAL PROPERTIES
    • Formlabs 2014 Clear Photopolymer Resin for Form 1+: MATERIAL PROPERTIES (http://formlabs.com/media/upload/Clear-DataSheet.pdf)
    • (2014)
  • 69
    • 84987648445 scopus 로고    scopus 로고
    • Asiga PlasCLEAR Technical Datasheet
    • Asiga 2015 PlasCLEAR Technical Datasheet (http://asiga.com/media/main/files/PlasCLEAR-us-en.pdf)
    • (2015)
  • 70
    • 84987648441 scopus 로고    scopus 로고
    • Stratasys Transparent Material for Clear Plastics Simulation|Stratasys
    • Stratasys 2015 Transparent Material for Clear Plastics Simulation|Stratasys (www.stratasys.com/materials/polyjet/transparent)
    • (2015)
  • 71
    • 84987622453 scopus 로고    scopus 로고
    • 3DSYSTEMS ProJet 3500 SD amp; HD Professional 3D Printers
    • 3DSYSTEMS 2015 ProJet 3500 SD & HD Professional 3D Printers (https://3dsystems.com/sites/www.3dsystems.com/files/projet-3500-plastic-0115-usen-web.pdf)
    • (2015)
  • 72
    • 84987648459 scopus 로고    scopus 로고
    • Somos Somosdr WaterShed XC 11122: The difference is clear
    • Somos 2015 Somosdr WaterShed XC 11122: The difference is clear (http://dsm.com/products/somos/en-US/offerings/offerings-somos-water-shed.html)
    • (2015)
  • 73
    • 84987640747 scopus 로고    scopus 로고
    • Miicraft Material Safety Data Sheet
    • Miicraft 2012 Material Safety Data Sheet (http://miicraft.com/web/assets/2012/07/MiiCraft-Blue-Resin-MSDS1.pdf)
    • (2012)
  • 74
    • 84987659608 scopus 로고    scopus 로고
    • Yangzhou Museum-woodblock for printing 2008, Wikimedia Commons, licensed under CC BY-SA 3.0 US
    • Menkov V Yangzhou Museum-woodblock for printing 2008, Wikimedia Commons, licensed under CC BY-SA 3.0 US
    • Menkov, V.1
  • 75
    • 84987622443 scopus 로고    scopus 로고
    • Diamond Sutra (photo: public domain) by International Dunhuang Project
    • Diamond Sutra (photo: public domain) by International Dunhuang Project (https://upload.wikimedia.org/wikipedia/commons/0/07/Diamond-sutra.jpg) - ref-separator -
  • 76
    • 84987622465 scopus 로고    scopus 로고
    • Uploadmo Korean moveable typeset Wikimedia Commons, licensed under CC BY-SA 3.0
    • Uploadmo 2009 Korean moveable typeset Wikimedia Commons, licensed under CC BY-SA 3.0
    • (2009)
  • 77
    • 84987638765 scopus 로고    scopus 로고
    • Gutenberg Press. 2004, Wikimedia Commons, public domain
    • Williams G H Gutenberg Press. 2004, Wikimedia Commons, public domain
    • Williams, G.H.1
  • 78
    • 84987648482 scopus 로고    scopus 로고
    • 73, C., Lithography stone and mirror image print of a map of Munich. 2006, Wikimedia Commons, licensed under CC BY-SA 3.0
    • 73, C., Lithography stone and mirror image print of a map of Munich. 2006, Wikimedia Commons, licensed under CC BY-SA 3.0 - ref-separator -
  • 79
    • 84987648473 scopus 로고    scopus 로고
    • Erste Druckpresse 2008, Wikimedia Commons, licensed under CC BY-SA 3.0
    • Bubo B Erste Druckpresse 2008, Wikimedia Commons, licensed under CC BY-SA 3.0
    • Bubo, B.1
  • 81
    • 84987659609 scopus 로고    scopus 로고
    • History of the Processes of Manufacture 1864 John Bradburn
    • History of the Processes of Manufacture 1864 John Bradburn - ref-separator -
  • 82
    • 84987622472 scopus 로고    scopus 로고
    • 3D Systems, 30 YEARS OF INNOVATION 2015
    • 3D Systems, 30 YEARS OF INNOVATION 2015 (Available from: http://3dsystems.com/30-years-innovation) - ref-separator -
  • 83
    • 84987638775 scopus 로고    scopus 로고
    • Makerbot Industries - Replicator 2 - 3D-printer 09 2012, Flicker, licensed under CC BY 2.0
    • Tools C Makerbot Industries - Replicator 2 - 3D-printer 09 2012, Flicker, licensed under CC BY 2.0
    • Tools, C.1
  • 84
    • 84987648490 scopus 로고    scopus 로고
    • Overview over 3D printing technologies
    • Overview over 3D printing technologies. 2016 (https://additively.com/en/learn-about/3d-printing-technologies) - ref-separator
    • (2016)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.