-
1
-
-
84897557208
-
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
-
3240-53
-
Gross B C et al 2014 Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences Anal. Chem. 86 3240-53
-
(2014)
Anal. Chem.
, vol.86
, pp. 3240-3253
-
-
Gross, B.C.1
-
2
-
-
84896508793
-
Cost-effective three-dimensional printing of visibly transparent microchips within minutes
-
3124-30
-
Shallan A I et al 2014 Cost-effective three-dimensional printing of visibly transparent microchips within minutes Anal. Chem. 86 3124-30
-
(2014)
Anal. Chem.
, vol.86
, pp. 3124-3130
-
-
Shallan, A.I.1
-
3
-
-
84940450098
-
Bioprinting for cancer research
-
504-13
-
Knowlton S, Onal S, Yu C H, Zhao J J and Tasoglu S 2015 Bioprinting for cancer research Trends Biotechnol. 33 504-13
-
(2015)
Trends Biotechnol.
, vol.33
, pp. 504-513
-
-
Knowlton, S.1
Onal, S.2
Yu, C.H.3
Zhao, J.J.4
Tasoglu, S.5
-
4
-
-
84945156353
-
Sickle cell detection using a smartphone
-
Knowlton S M, Sencan I, Aytar Y, Khoory J, Heeney M M, Ghiran I C and Tasoglu S 2015 Sickle cell detection using a smartphone Sci. Rep. 5 15022
-
(2015)
Sci. Rep.
, vol.5
-
-
Knowlton, S.M.1
Sencan, I.2
Aytar, Y.3
Khoory, J.4
Heeney, M.M.5
Ghiran, I.C.6
Tasoglu, S.7
-
5
-
-
84943303363
-
Smart-phone based magnetic levitation for measuring densities
-
Knowlton S, Yu C H, Jain N, Ghiran I C and Tasoglu S 2015 Smart-phone based magnetic levitation for measuring densities PLoS ONE 10 e0134400
-
(2015)
PLoS ONE
, vol.10
, pp. e0134400
-
-
Knowlton, S.1
Yu, C.H.2
Jain, N.3
Ghiran, I.C.4
Tasoglu, S.5
-
6
-
-
84987630938
-
Label-Free Sickle Cell Disease Diagnosis using a Low-Cost, Handheld Platform
-
in press
-
Yenilmez B, Knowlton S, Yu C H, Heeney M and Tasoglu S 2016 Label-Free Sickle Cell Disease Diagnosis using a Low-Cost, Handheld Platform Adv. Mat. Tech. in press
-
(2016)
Adv. Mat. Tech.
-
-
Yenilmez, B.1
Knowlton, S.2
Yu, C.H.3
Heeney, M.4
Tasoglu, S.5
-
7
-
-
84888783450
-
3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots
-
421-7
-
Krejcova L et al 2014 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots Biosens. Bioelectron. 54 421-7
-
(2014)
Biosens. Bioelectron.
, vol.54
, pp. 421-427
-
-
Krejcova, L.1
-
8
-
-
84926312318
-
3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section
-
Lee W et al 2015 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section Sci. Rep. 5 7717
-
(2015)
Sci. Rep.
, vol.5
, pp. 7717
-
-
Lee, W.1
-
10
-
-
84938907414
-
Advances in nanotechnology and microfluidics for human papillomavirus diagnostics
-
161-78
-
Tasoglu S et al 2015 Advances in nanotechnology and microfluidics for human papillomavirus diagnostics Proc. IEEE 103 161-78
-
(2015)
Proc. IEEE
, vol.103
, pp. 161-178
-
-
Tasoglu, S.1
-
11
-
-
84931269554
-
Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips
-
9-18
-
Chan H N et al 2015 Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips Microfluidics Nanofluidics 19 9-18
-
(2015)
Microfluidics Nanofluidics
, vol.19
, pp. 9-18
-
-
Chan, H.N.1
-
12
-
-
84865202010
-
Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices
-
3267-71
-
Kitson P J et al 2012 Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices Lab Chip 12 3267-71
-
(2012)
Lab Chip
, vol.12
, pp. 3267-3271
-
-
Kitson, P.J.1
-
13
-
-
84923793028
-
3D printed microfluidic devices with integrated valves
-
Rogers C I et al 2015 3D printed microfluidic devices with integrated valves Biomicrofluidics 9 016501
-
(2015)
Biomicrofluidics
, vol.9
-
-
Rogers, C.I.1
-
14
-
-
84928576320
-
Development of a 3D printer using scanning projection stereolithography
-
Lee M P et al 2015 Development of a 3D printer using scanning projection stereolithography Sci. Rep. 5 9875
-
(2015)
Sci. Rep.
, vol.5
, pp. 9875
-
-
Lee, M.P.1
-
15
-
-
84910052995
-
Lab-on-A-chip devices: How to close and plug the lab?
-
156-75
-
Temiz Y et al 2015 Lab-on-A-chip devices: How to close and plug the lab? Microelectron. Eng. 132 156-75
-
(2015)
Microelectron. Eng.
, vol.132
, pp. 156-175
-
-
Temiz, Y.1
-
16
-
-
84969375488
-
3D-printed microfluidics
-
2-22
-
Au A K et al 2016 3D-printed microfluidics Angew. Chem., Int. Ed. Engl. 55 2-22
-
(2016)
Angew. Chem., Int. Ed. Engl.
, vol.55
, pp. 2-22
-
-
Au, A.K.1
-
17
-
-
84908147027
-
Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
-
O'Neill P et al 2014 Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications Biomicrofluidics 8 052112
-
(2014)
Biomicrofluidics
, vol.8
-
-
O'Neill, P.1
-
18
-
-
84987622361
-
Biological implications of lab-on-A-chip devices fabricated using multi-jetmodelling and stereolithography processes
-
International Society for Optics and Photonics
-
Zhu F et al 2015 Biological implications of lab-on-A-chip devices fabricated using multi-jetmodelling and stereolithography processes in SPIE Microtechnologies International Society for Optics and Photonics
-
(2015)
SPIE Microtechnologies
-
-
Zhu, F.1
-
19
-
-
84959305990
-
3D printing: An emerging tool for novel microfluidics and lab-on-A-chip applications
-
1-18
-
Yazdi A A et al 2016 3D printing: an emerging tool for novel microfluidics and lab-on-A-chip applications Microfluidics Nanofluidics 20 1-18
-
(2016)
Microfluidics Nanofluidics
, vol.20
, pp. 1-18
-
-
Yazdi, A.A.1
-
20
-
-
84940047332
-
3D printed microfluidics for biological applications
-
3627-37
-
Ho C M B et al 2015 3D printed microfluidics for biological applications Lab Chip 15 3627-37
-
(2015)
Lab Chip
, vol.15
, pp. 3627-3637
-
-
Ho, C.M.B.1
-
21
-
-
82555200840
-
Let there be chip - Towards rapid prototyping of microfluidic devices: One-step manufacturing processes
-
2681-716
-
Waldbaur A et al 2011 Let there be chip - towards rapid prototyping of microfluidic devices: one-step manufacturing processes Anal. Methods 3 2681-716
-
(2011)
Anal. Methods
, vol.3
, pp. 2681-2716
-
-
Waldbaur, A.1
-
22
-
-
0003256215
-
Apparatus for production of three-dimensional objects by stereolithography
-
US Patent No. 4,575,330
-
Hull C W 1986 Apparatus for production of three-dimensional objects by stereolithography Google Patents, US Patent No. 4,575,330
-
(1986)
Google Patents
-
-
Hull, C.W.1
-
23
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
6121-30
-
Melchels F P, Feijen J and Grijpma D W 2010 A review on stereolithography and its applications in biomedical engineering Biomaterials 31 6121-30
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
24
-
-
84878338124
-
Digital micromirror device projection printing system for meniscus tissue engineering
-
7218-26
-
Grogan S P et al 2013 Digital micromirror device projection printing system for meniscus tissue engineering Acta Biomaterialia 9 7218-26
-
(2013)
Acta Biomaterialia
, vol.9
, pp. 7218-7226
-
-
Grogan, S.P.1
-
25
-
-
84903496986
-
Microstereolithography
-
(Berlin: Springer) pp 81-112
-
Bertsch A and Renaud P 2011 Microstereolithography Stereolithography (Berlin: Springer) pp 81-112
-
(2011)
Stereolithography
, pp. 81-112
-
-
Bertsch, A.1
Renaud, P.2
-
26
-
-
0042411070
-
Increased accuracy by using dynamic finite element method in the constrain-surface stereolithography system
-
191-6
-
Huang Y-M, Jeng J-Y and Jiang C-P 2003 Increased accuracy by using dynamic finite element method in the constrain-surface stereolithography system J. Mater. Process. Technol. 140 191-6
-
(2003)
J. Mater. Process. Technol.
, vol.140
, pp. 191-196
-
-
Huang, Y.-M.1
Jeng, J.-Y.2
Jiang, C.-P.3
-
27
-
-
0002003927
-
Static micromixers based on large-scale industrial mixer geometry
-
56-60
-
Bertsch A et al 2001 Static micromixers based on large-scale industrial mixer geometry Lab Chip 1 56-60
-
(2001)
Lab Chip
, vol.1
, pp. 56-60
-
-
Bertsch, A.1
-
28
-
-
78650156290
-
Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length
-
100-3
-
Lim T W et al 2011 Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length Lab Chip 11 100-3
-
(2011)
Lab Chip
, vol.11
, pp. 100-103
-
-
Lim, T.W.1
-
29
-
-
58149478356
-
Microreplication and design of biological architectures using dynamic-mask multiphoton lithography
-
120-5
-
Nielson R, Kaehr B and Shear J B 2009 Microreplication and design of biological architectures using dynamic-mask multiphoton lithography Small 5 120-5
-
(2009)
Small
, vol.5
, pp. 120-125
-
-
Nielson, R.1
Kaehr, B.2
Shear, J.B.3
-
30
-
-
0006540402
-
Apparatus and method for creating three-dimensional objects
-
US Patent No. 5,121,329
-
Crump S S 1992 Apparatus and method for creating three-dimensional objects Google Patents, US Patent No. 5,121,329
-
(1992)
Google Patents
-
-
Crump, S.S.1
-
31
-
-
0032188397
-
A comparison of rapid prototyping technologies
-
1257-87
-
Pham D and Gault R 1998 A comparison of rapid prototyping technologies Int. J. Mach. Tools. Manuf. 38 1257-87
-
(1998)
Int. J. Mach. Tools. Manuf.
, vol.38
, pp. 1257-1287
-
-
Pham, D.1
Gault, R.2
-
32
-
-
67649395515
-
Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method
-
4243-52
-
Sood A K, Ohdar R and Mahapatra S 2009 Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method Mater. Des. 30 4243-52
-
(2009)
Mater. Des.
, vol.30
, pp. 4243-4252
-
-
Sood, A.K.1
Ohdar, R.2
Mahapatra, S.3
-
33
-
-
84860255597
-
Integrated 3D-printed reactionware for chemical synthesis and analysis
-
349-54
-
Symes M D et al 2012 Integrated 3D-printed reactionware for chemical synthesis and analysis Nat. Chem. 4 349-54
-
(2012)
Nat. Chem.
, vol.4
, pp. 349-354
-
-
Symes, M.D.1
-
34
-
-
84924972351
-
Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt
-
1736-41
-
Gelber M K and Bhargava R 2015 Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt Lab Chip 15 1736-41
-
(2015)
Lab Chip
, vol.15
, pp. 1736-1741
-
-
Gelber, M.K.1
Bhargava, R.2
-
35
-
-
0034773430
-
Inkjet printing for materials and devices
-
3299-305
-
Calvert P 2001 Inkjet printing for materials and devices Chem. Mater. 13 3299-305
-
(2001)
Chem. Mater.
, vol.13
, pp. 3299-3305
-
-
Calvert, P.1
-
36
-
-
84885821384
-
Apparatus and method for three-dimensional model printing
-
Gothait H 2001 Apparatus and method for three-dimensional model printing Google Patents
-
(2001)
Google Patents
-
-
Gothait, H.1
-
37
-
-
84901022826
-
3D printed microfluidic devices with integrated versatile and reusable electrodes
-
2023-32
-
Erkal J L et al 2014 3D printed microfluidic devices with integrated versatile and reusable electrodes Lab Chip 14 2023-32
-
(2014)
Lab Chip
, vol.14
, pp. 2023-2032
-
-
Erkal, J.L.1
-
38
-
-
84910144852
-
The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications
-
4616-28
-
Begolo S et al 2014 The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications Lab Chip 14 4616-28
-
(2014)
Lab Chip
, vol.14
, pp. 4616-4628
-
-
Begolo, S.1
-
39
-
-
84928738389
-
3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR
-
2049-54
-
Causier A et al 2015 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR Lab Chip 15 2049-54
-
(2015)
Lab Chip
, vol.15
, pp. 2049-2054
-
-
Causier, A.1
-
40
-
-
78650628634
-
3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development
-
291-4
-
Bonyár A et al 2010 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development Procedia Eng. 5 291-4
-
(2010)
Procedia Eng.
, vol.5
, pp. 291-294
-
-
Bonyár, A.1
-
41
-
-
84879201823
-
A 3D printed fluidic device that enables integrated features
-
5622-6
-
Anderson K B et al 2013 A 3D printed fluidic device that enables integrated features Anal. Chem. 85 5622-6
-
(2013)
Anal. Chem.
, vol.85
, pp. 5622-5626
-
-
Anderson, K.B.1
-
42
-
-
84890336466
-
PDMS lab-on-A-chip fabrication using 3D printed templates
-
424-30
-
Comina G, Suska A and Filippini D 2013 PDMS lab-on-A-chip fabrication using 3D printed templates Lab Chip 14 424-30
-
(2013)
Lab Chip
, vol.14
, pp. 424-430
-
-
Comina, G.1
Suska, A.2
Filippini, D.3
-
43
-
-
84934889940
-
Polymer coatings in 3D printed fluidic device channels for improved cellular adherence prior to electrical lysis
-
6335-41
-
Gross B C et al 2015 Polymer coatings in 3D printed fluidic device channels for improved cellular adherence prior to electrical lysis Anal. Chem. 87 6335-41
-
(2015)
Anal. Chem.
, vol.87
, pp. 6335-6341
-
-
Gross, B.C.1
-
44
-
-
84904321215
-
Low cost lab-on-A-chip prototyping with a consumer grade 3D printer
-
2978-82
-
Comina G, Suska A and Filippini D 2014 Low cost lab-on-A-chip prototyping with a consumer grade 3D printer Lab Chip 14 2978-82
-
(2014)
Lab Chip
, vol.14
, pp. 2978-2982
-
-
Comina, G.1
Suska, A.2
Filippini, D.3
-
45
-
-
84923005944
-
3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients
-
1-8
-
Kamei K I et al 2015 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients Biomed. Microdevices 17 1-8
-
(2015)
Biomed. Microdevices
, vol.17
, pp. 1-8
-
-
Kamei, K.I.1
-
46
-
-
84923666988
-
Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing
-
Donvito L et al 2015 Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing J. Micromech. Microeng. 25 035013
-
(2015)
J. Micromech. Microeng.
, vol.25
, Issue.3
-
-
Donvito, L.1
-
47
-
-
84907662314
-
A 3D-printed microcapillary assembly for facile double emulsion generation
-
4178-82
-
Martino C, Berger S and Wootton R C 2014 A 3D-printed microcapillary assembly for facile double emulsion generation Lab Chip 14 4178-82
-
(2014)
Lab Chip
, vol.14
, pp. 4178-4182
-
-
Martino, C.1
Berger, S.2
Wootton, R.C.3
-
48
-
-
84913570454
-
Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles
-
Chen Q L, Liu Z and Shum H C 2014 Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles Biomicrofluidics 8 064112
-
(2014)
Biomicrofluidics
, vol.8
-
-
Chen, Q.L.1
Liu, Z.2
Shum, H.C.3
-
49
-
-
84860255597
-
Integrated 3D-printed reactionware for chemical synthesis and analysis
-
349-54
-
Symes M D et al 2012 Integrated 3D-printed reactionware for chemical synthesis and analysis Nat. Chem. 4 349-54
-
(2012)
Nat. Chem.
, vol.4
, pp. 349-354
-
-
Symes, M.D.1
-
50
-
-
84931288067
-
3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up
-
12723-8
-
Kitson P J et al 2014 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up Angew. Chem., Int. Ed. Engl. 53 12723-8
-
(2014)
Angew. Chem., Int. Ed. Engl.
, vol.53
, pp. 12723-12728
-
-
Kitson, P.J.1
-
51
-
-
84904766893
-
Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains
-
58-63
-
Su C K, Hsia S C and Sun Y C 2014 Three-dimensional printed sample load/inject valves enabling online monitoring of extracellular calcium and zinc ions in living rat brains Anal. Chim. Acta 838 58-63
-
(2014)
Anal. Chim. Acta
, vol.838
, pp. 58-63
-
-
Su, C.K.1
Hsia, S.C.2
Sun, Y.C.3
-
52
-
-
84928554016
-
3D printed unibody lab-on-A-chip: Features survey and check-valves integration
-
437-51
-
Comina G, Suska A and Filippini D 2015 3D printed unibody lab-on-A-chip: features survey and check-valves integration Micromachines 6 437-51
-
(2015)
Micromachines
, vol.6
, pp. 437-451
-
-
Comina, G.1
Suska, A.2
Filippini, D.3
-
53
-
-
84926349262
-
3D-printed microfluidic automation
-
1934-41
-
Au A K et al 2015 3D-printed microfluidic automation Lab Chip 15 1934-41
-
(2015)
Lab Chip
, vol.15
, pp. 1934-1941
-
-
Au, A.K.1
-
54
-
-
84890282745
-
Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings
-
199-203
-
Paydar O et al 2014 Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings Sensors Actuators A 205 199-203
-
(2014)
Sensors Actuators
, vol.205
, pp. 199-203
-
-
Paydar, O.1
-
55
-
-
84905758109
-
3D printed modules for integrated microfluidic devices
-
32876-80
-
Lee K G et al 2014 3D printed modules for integrated microfluidic devices RSC Adv. 4 32876-80
-
(2014)
RSC Adv.
, vol.4
, pp. 32876-32880
-
-
Lee, K.G.1
-
57
-
-
84922837891
-
3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles
-
457-66
-
Chudobova D et al 2015 3D-printed chip for detection of methicillin-resistant Staphylococcus aureus labeled with gold nanoparticles Electrophoresis 36 457-66
-
(2015)
Electrophoresis
, vol.36
, pp. 457-466
-
-
Chudobova, D.1
-
58
-
-
85027941345
-
Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process
-
1347-52
-
Takenaga S et al 2015 Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process Phys. Status Solidi a 212 1347-52
-
(2015)
Phys. Status Solidi
, vol.212
, pp. 1347-1352
-
-
Takenaga, S.1
-
59
-
-
84921834266
-
A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode
-
2438-52
-
Vlachova J et al 2015 A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode Sensors 15 2438-52
-
(2015)
Sensors
, vol.15
, pp. 2438-2452
-
-
Vlachova, J.1
-
60
-
-
1642351161
-
Engineering flows in small devices: Microfluidics toward a lab-on-A-chip
-
381-411
-
Stone H A, Stroock A D and Ajdari A 2004 Engineering flows in small devices: microfluidics toward a lab-on-A-chip Annu. Rev. Fluid Mech. 36 381-411
-
(2004)
Annu. Rev. Fluid Mech.
, vol.36
, pp. 381-411
-
-
Stone, H.A.1
Stroock, A.D.2
Ajdari, A.3
-
61
-
-
33645238778
-
Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems
-
281-93
-
Mata A, Fleischman A J and Roy S 2005 Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems Biomed. Microdevices 7 281-93
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 281-293
-
-
Mata, A.1
Fleischman, A.J.2
Roy, S.3
-
62
-
-
84888143945
-
Design and additive manufacture for flow chemistry
-
4583-90
-
Capel A J et al 2013 Design and additive manufacture for flow chemistry Lab Chip 13 4583-90
-
(2013)
Lab Chip
, vol.13
, pp. 4583-4590
-
-
Capel, A.J.1
-
63
-
-
84987603885
-
Additive manufacturing of lab-on-A-chip devices: Promises and challenges
-
in SPIE Micro+ Nano Materials, Devices, and Applications International Society for Optics and Photonics
-
Zhu F et al 2013 Additive manufacturing of lab-on-A-chip devices: promises and challenges in SPIE Micro+ Nano Materials, Devices, and Applications International Society for Optics and Photonics
-
(2013)
SPIE Micro+ Nano Materials, Devices, and Applications
-
-
Zhu, F.1
-
64
-
-
84987603888
-
-
Autodesk standard clear resin is now open source, in Ember Blog. Autodesk, Inc
-
Wilhelm E 2015 Autodesk standard clear resin is now open source, in Ember Blog. Autodesk, Inc
-
(2015)
-
-
Wilhelm, E.1
-
65
-
-
84897477797
-
Research highlights: Printing the future of microfabrication
-
1491-5
-
Tseng P et al 2014 Research highlights: printing the future of microfabrication Lab Chip 14 1491-5
-
(2014)
Lab Chip
, vol.14
, pp. 1491-1495
-
-
Tseng, P.1
-
66
-
-
84897520011
-
Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering
-
Johnston I et al 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering J. Micromech. Microeng. 24 035017
-
(2014)
J. Micromech. Microeng.
, vol.24
, Issue.3
-
-
Johnston, I.1
-
67
-
-
84894292720
-
Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions
-
242-6
-
Tymrak B, Kreiger M and Pearce J 2014 Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions Mater. Des. 58 242-6
-
(2014)
Mater. Des.
, vol.58
, pp. 242-246
-
-
Tymrak, B.1
Kreiger, M.2
Pearce, J.3
-
68
-
-
84987655326
-
-
Formlabs Clear Photopolymer Resin for Form 1+: MATERIAL PROPERTIES
-
Formlabs 2014 Clear Photopolymer Resin for Form 1+: MATERIAL PROPERTIES (http://formlabs.com/media/upload/Clear-DataSheet.pdf)
-
(2014)
-
-
-
69
-
-
84987648445
-
-
Asiga PlasCLEAR Technical Datasheet
-
Asiga 2015 PlasCLEAR Technical Datasheet (http://asiga.com/media/main/files/PlasCLEAR-us-en.pdf)
-
(2015)
-
-
-
70
-
-
84987648441
-
-
Stratasys Transparent Material for Clear Plastics Simulation|Stratasys
-
Stratasys 2015 Transparent Material for Clear Plastics Simulation|Stratasys (www.stratasys.com/materials/polyjet/transparent)
-
(2015)
-
-
-
71
-
-
84987622453
-
-
3DSYSTEMS ProJet 3500 SD amp; HD Professional 3D Printers
-
3DSYSTEMS 2015 ProJet 3500 SD & HD Professional 3D Printers (https://3dsystems.com/sites/www.3dsystems.com/files/projet-3500-plastic-0115-usen-web.pdf)
-
(2015)
-
-
-
72
-
-
84987648459
-
-
Somos Somosdr WaterShed XC 11122: The difference is clear
-
Somos 2015 Somosdr WaterShed XC 11122: The difference is clear (http://dsm.com/products/somos/en-US/offerings/offerings-somos-water-shed.html)
-
(2015)
-
-
-
73
-
-
84987640747
-
-
Miicraft Material Safety Data Sheet
-
Miicraft 2012 Material Safety Data Sheet (http://miicraft.com/web/assets/2012/07/MiiCraft-Blue-Resin-MSDS1.pdf)
-
(2012)
-
-
-
74
-
-
84987659608
-
-
Yangzhou Museum-woodblock for printing 2008, Wikimedia Commons, licensed under CC BY-SA 3.0 US
-
Menkov V Yangzhou Museum-woodblock for printing 2008, Wikimedia Commons, licensed under CC BY-SA 3.0 US
-
-
-
Menkov, V.1
-
75
-
-
84987622443
-
-
Diamond Sutra (photo: public domain) by International Dunhuang Project
-
Diamond Sutra (photo: public domain) by International Dunhuang Project (https://upload.wikimedia.org/wikipedia/commons/0/07/Diamond-sutra.jpg) - ref-separator -
-
-
-
-
76
-
-
84987622465
-
-
Uploadmo Korean moveable typeset Wikimedia Commons, licensed under CC BY-SA 3.0
-
Uploadmo 2009 Korean moveable typeset Wikimedia Commons, licensed under CC BY-SA 3.0
-
(2009)
-
-
-
77
-
-
84987638765
-
-
Gutenberg Press. 2004, Wikimedia Commons, public domain
-
Williams G H Gutenberg Press. 2004, Wikimedia Commons, public domain
-
-
-
Williams, G.H.1
-
78
-
-
84987648482
-
-
73, C., Lithography stone and mirror image print of a map of Munich. 2006, Wikimedia Commons, licensed under CC BY-SA 3.0
-
73, C., Lithography stone and mirror image print of a map of Munich. 2006, Wikimedia Commons, licensed under CC BY-SA 3.0 - ref-separator -
-
-
-
-
79
-
-
84987648473
-
-
Erste Druckpresse 2008, Wikimedia Commons, licensed under CC BY-SA 3.0
-
Bubo B Erste Druckpresse 2008, Wikimedia Commons, licensed under CC BY-SA 3.0
-
-
-
Bubo, B.1
-
81
-
-
84987659609
-
-
History of the Processes of Manufacture 1864 John Bradburn
-
History of the Processes of Manufacture 1864 John Bradburn - ref-separator -
-
-
-
-
82
-
-
84987622472
-
-
3D Systems, 30 YEARS OF INNOVATION 2015
-
3D Systems, 30 YEARS OF INNOVATION 2015 (Available from: http://3dsystems.com/30-years-innovation) - ref-separator -
-
-
-
-
83
-
-
84987638775
-
-
Makerbot Industries - Replicator 2 - 3D-printer 09 2012, Flicker, licensed under CC BY 2.0
-
Tools C Makerbot Industries - Replicator 2 - 3D-printer 09 2012, Flicker, licensed under CC BY 2.0
-
-
-
Tools, C.1
-
84
-
-
84987648490
-
-
Overview over 3D printing technologies
-
Overview over 3D printing technologies. 2016 (https://additively.com/en/learn-about/3d-printing-technologies) - ref-separator
-
(2016)
-
-
|