메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2809-2817

Online Collaborative Learning for Open-Vocabulary Visual Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; PATTERN RECOGNITION; VISUAL LANGUAGES;

EID: 84986325880     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.307     Document Type: Conference Paper
Times cited : (46)

References (49)
  • 1
    • 84894567325 scopus 로고    scopus 로고
    • Good practice in large-scale learning for image classification
    • Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. TPAMI, 2014.
    • (2014) TPAMI
    • Akata, Z.1    Perronnin, F.2    Harchaoui, Z.3    Schmid, C.4
  • 3
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • O. Bousquet and L. Bottou. The tradeoffs of large scale learning. In NIPS, 2008.
    • (2008) NIPS
    • Bousquet, O.1    Bottou, L.2
  • 4
    • 84973865248 scopus 로고    scopus 로고
    • Webly supervised learning of convolutional networks
    • X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Chen, X.1    Gupta, A.2
  • 5
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013.
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 6
    • 84877784525 scopus 로고    scopus 로고
    • Feature-aware label space dimension reduction for multi-label classification
    • Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification. In NIPS, 2012.
    • (2012) NIPS
    • Chen, Y.-N.1    Lin, H.-T.2
  • 7
    • 74049158146 scopus 로고    scopus 로고
    • Nuswide: A real-world web image database from national university of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nuswide: a real-world web image database from national university of singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 8
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Recommender systems, 2010.
    • (2010) Recommender Systems
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 9
    • 77951194085 scopus 로고    scopus 로고
    • Minimising semantic drift with mutual exclusion bootstrapping
    • J. R. Curran, T. Murphy, and B. Scholz. Minimising semantic drift with mutual exclusion bootstrapping. In PACL, 2007.
    • (2007) PACL
    • Curran, J.R.1    Murphy, T.2    Scholz, B.3
  • 10
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10,000 image categories tell us
    • J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV. 2010.
    • (2010) ECCV
    • Deng, J.1    Berg, A.C.2    Li, K.3    Fei-Fei, L.4
  • 12
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
    • (2014) CVPR
    • Divvala, S.K.1    Farhadi, A.2    Guestrin, C.3
  • 14
    • 84959203754 scopus 로고    scopus 로고
    • Collaborative feature learning from social media
    • C. Fang, H. Jin, J. Yang, and Z. Lin. Collaborative feature learning from social media. In CVPR, 2015.
    • (2015) CVPR
    • Fang, C.1    Jin, H.2    Yang, J.3    Lin, Z.4
  • 15
    • 84898951651 scopus 로고    scopus 로고
    • Online robust PCA via stochastic optimization
    • J. Feng, H. Xu, and S. Yan. Online robust pca via stochastic optimization. In NIPS, 2013.
    • (2013) NIPS
    • Feng, J.1    Xu, H.2    Yan, S.3
  • 17
    • 84973866015 scopus 로고    scopus 로고
    • Learning image and user features for recommendation in social networks
    • X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV, 2015.
    • (2015) ICCV
    • Geng, X.1    Zhang, H.2    Bian, J.3    Chua, T.-S.4
  • 19
    • 70450155469 scopus 로고    scopus 로고
    • Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
    • A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In ECCV. 2008.
    • (2008) ECCV
    • Gupta, A.1    Davis, L.S.2
  • 20
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 1936.
    • (1936) Biometrika
    • Hotelling, H.1
  • 21
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 22
    • 84959235126 scopus 로고    scopus 로고
    • What do 15,000 object categories tell us about classifying and localizing actions
    • M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000 object categories tell us about classifying and localizing actions? In CVPR, 2015.
    • (2015) CVPR
    • Jain, M.1    Van Gemert, J.C.2    Snoek, C.G.3
  • 23
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011.
    • (2011) ICMR
    • Jiang, Y.-G.1    Ye, G.2    Chang, S.-F.3    Ellis, D.4    Loui, A.C.5
  • 24
    • 84937843643 scopus 로고    scopus 로고
    • Deep fragment embeddings for bidirectional image sentence mapping
    • A. Karpathy, A. Joulin, and F. F. F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In NIPS, 2014.
    • (2014) NIPS
    • Karpathy, A.1    Joulin, A.2    Li, F.F.F.3
  • 25
    • 84944113729 scopus 로고    scopus 로고
    • Unifying visualsemantic embeddings with multimodal neural language models
    • R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visualsemantic embeddings with multimodal neural language models. In NIPS, 2014.
    • (2014) NIPS
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.S.3
  • 26
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 28
    • 84953837450 scopus 로고    scopus 로고
    • From visual attributes to adjectives through decompositional distributional semantics
    • A. Lazaridou, G. Dinu, A. Liska, and M. Baroni. From visual attributes to adjectives through decompositional distributional semantics. TACL, 2015.
    • (2015) TACL
    • Lazaridou, A.1    Dinu, G.2    Liska, A.3    Baroni, M.4
  • 29
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013.
    • (2013) CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 31
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 2010.
    • (2010) JMLR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 32
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 33
    • 84898828265 scopus 로고    scopus 로고
    • From large scale image categorization to entry-level categories
    • V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. Berg. From large scale image categorization to entry-level categories. In ICCV, 2013.
    • (2013) ICCV
    • Ordonez, V.1    Deng, J.2    Choi, Y.3    Berg, A.C.4    Berg, T.5
  • 34
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011.
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 36
    • 77955111164 scopus 로고    scopus 로고
    • Unsupervised learning of visual sense models for polysemous words
    • K. Saenko and T. Darrell. Unsupervised learning of visual sense models for polysemous words. In NIPS, 2009.
    • (2009) NIPS
    • Saenko, K.1    Darrell, T.2
  • 37
    • 80052905403 scopus 로고    scopus 로고
    • Learning to share visual appearance for multiclass object detection
    • R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
    • (2011) CVPR
    • Salakhutdinov, R.1    Torralba, A.2    Tenenbaum, J.3
  • 38
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 39
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro, T. Jaakkola, et al. Weighted low-rank approximations. In ICML, 2003.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 40
    • 77956208065 scopus 로고    scopus 로고
    • Training and testing of recommender systems on data missing not at random
    • H. Steck. Training and testing of recommender systems on data missing not at random. In KDD, 2010.
    • (2010) KDD
    • Steck, H.1
  • 42
    • 84867116137 scopus 로고    scopus 로고
    • Multilabel classification with principal label space transformation
    • F. Tai and H.-T. Lin. Multilabel classification with principal label space transformation. Neural Computation, 2012.
    • (2012) Neural Computation
    • Tai, F.1    Lin, H.-T.2
  • 43
    • 84907025192 scopus 로고    scopus 로고
    • Incremental and decremental training for linear classification
    • C.-H. Tsai, C.-Y. Lin, and C.-J. Lin. Incremental and decremental training for linear classification. In KDD, 2014.
    • (2014) KDD
    • Tsai, C.-H.1    Lin, C.-Y.2    Lin, C.-J.3
  • 46
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 47
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2014.
    • (2014) TACL
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4
  • 48
    • 84919793029 scopus 로고    scopus 로고
    • Large-scale multi-label learning with missing labels
    • H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale multi-label learning with missing labels. In ICML, 2013.
    • (2013) ICML
    • Yu, H.-F.1    Jain, P.2    Kar, P.3    Dhillon, I.S.4
  • 49
    • 84913592052 scopus 로고    scopus 로고
    • Start from scratch: Towards automatically identifying, modeling, and naming visual attributes
    • H. Zhang, Y. Yang, H. Luan, S. Yang, and T.-S. Chua. Start from scratch: Towards automatically identifying, modeling, and naming visual attributes. In MM, 2014.
    • (2014) MM
    • Zhang, H.1    Yang, Y.2    Luan, H.3    Yang, S.4    Chua, T.-S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.