-
1
-
-
84894567325
-
Good practice in large-scale learning for image classification
-
Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Good practice in large-scale learning for image classification. TPAMI, 2014.
-
(2014)
TPAMI
-
-
Akata, Z.1
Perronnin, F.2
Harchaoui, Z.3
Schmid, C.4
-
3
-
-
85162035281
-
The tradeoffs of large scale learning
-
O. Bousquet and L. Bottou. The tradeoffs of large scale learning. In NIPS, 2008.
-
(2008)
NIPS
-
-
Bousquet, O.1
Bottou, L.2
-
4
-
-
84973865248
-
Webly supervised learning of convolutional networks
-
X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Chen, X.1
Gupta, A.2
-
5
-
-
84898803720
-
Neil: Extracting visual knowledge from web data
-
X. Chen, A. Shrivastava, and A. Gupta. Neil: Extracting visual knowledge from web data. In ICCV, 2013.
-
(2013)
ICCV
-
-
Chen, X.1
Shrivastava, A.2
Gupta, A.3
-
6
-
-
84877784525
-
Feature-aware label space dimension reduction for multi-label classification
-
Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification. In NIPS, 2012.
-
(2012)
NIPS
-
-
Chen, Y.-N.1
Lin, H.-T.2
-
7
-
-
74049158146
-
Nuswide: A real-world web image database from national university of Singapore
-
T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nuswide: a real-world web image database from national university of singapore. In CIVR, 2009.
-
(2009)
CIVR
-
-
Chua, T.-S.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
8
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Recommender systems, 2010.
-
(2010)
Recommender Systems
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
9
-
-
77951194085
-
Minimising semantic drift with mutual exclusion bootstrapping
-
J. R. Curran, T. Murphy, and B. Scholz. Minimising semantic drift with mutual exclusion bootstrapping. In PACL, 2007.
-
(2007)
PACL
-
-
Curran, J.R.1
Murphy, T.2
Scholz, B.3
-
10
-
-
80052876786
-
What does classifying more than 10,000 image categories tell us
-
J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000 image categories tell us? In ECCV. 2010.
-
(2010)
ECCV
-
-
Deng, J.1
Berg, A.C.2
Li, K.3
Fei-Fei, L.4
-
11
-
-
84925408575
-
Large-scale object classification using label relation graphs
-
J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven, and H. Adam. Large-scale object classification using label relation graphs. In ECCV. 2014.
-
(2014)
ECCV
-
-
Deng, J.1
Ding, N.2
Jia, Y.3
Frome, A.4
Murphy, K.5
Bengio, S.6
Li, Y.7
Neven, H.8
Adam, H.9
-
12
-
-
84911368326
-
Learning everything about anything: Webly-supervised visual concept learning
-
S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
-
(2014)
CVPR
-
-
Divvala, S.K.1
Farhadi, A.2
Guestrin, C.3
-
13
-
-
85009880339
-
-
arXiv preprint arXiv:1310.1531
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531, 2013.
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
14
-
-
84959203754
-
Collaborative feature learning from social media
-
C. Fang, H. Jin, J. Yang, and Z. Lin. Collaborative feature learning from social media. In CVPR, 2015.
-
(2015)
CVPR
-
-
Fang, C.1
Jin, H.2
Yang, J.3
Lin, Z.4
-
15
-
-
84898951651
-
Online robust PCA via stochastic optimization
-
J. Feng, H. Xu, and S. Yan. Online robust pca via stochastic optimization. In NIPS, 2013.
-
(2013)
NIPS
-
-
Feng, J.1
Xu, H.2
Yan, S.3
-
16
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep visual-semantic embedding model. In NIPS, 2013.
-
(2013)
NIPS
-
-
Frome, A.1
Corrado, G.S.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Mikolov, T.6
-
17
-
-
84973866015
-
Learning image and user features for recommendation in social networks
-
X. Geng, H. Zhang, J. Bian, and T.-S. Chua. Learning image and user features for recommendation in social networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Geng, X.1
Zhang, H.2
Bian, J.3
Chua, T.-S.4
-
18
-
-
85131224768
-
Open-vocabulary object retrieval
-
S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue, and T. Darrell. Open-vocabulary object retrieval. In Robotics Science and Systems (RSS), 2014.
-
(2014)
Robotics Science and Systems (RSS)
-
-
Guadarrama, S.1
Rodner, E.2
Saenko, K.3
Zhang, N.4
Farrell, R.5
Donahue, J.6
Darrell, T.7
-
19
-
-
70450155469
-
Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
-
A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In ECCV. 2008.
-
(2008)
ECCV
-
-
Gupta, A.1
Davis, L.S.2
-
20
-
-
0000107975
-
Relations between two sets of variates
-
H. Hotelling. Relations between two sets of variates. Biometrika, 1936.
-
(1936)
Biometrika
-
-
Hotelling, H.1
-
22
-
-
84959235126
-
What do 15,000 object categories tell us about classifying and localizing actions
-
M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000 object categories tell us about classifying and localizing actions? In CVPR, 2015.
-
(2015)
CVPR
-
-
Jain, M.1
Van Gemert, J.C.2
Snoek, C.G.3
-
23
-
-
79959766559
-
Consumer video understanding: A benchmark database and an evaluation of human and machine performance
-
Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011.
-
(2011)
ICMR
-
-
Jiang, Y.-G.1
Ye, G.2
Chang, S.-F.3
Ellis, D.4
Loui, A.C.5
-
24
-
-
84937843643
-
Deep fragment embeddings for bidirectional image sentence mapping
-
A. Karpathy, A. Joulin, and F. F. F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In NIPS, 2014.
-
(2014)
NIPS
-
-
Karpathy, A.1
Joulin, A.2
Li, F.F.F.3
-
25
-
-
84944113729
-
Unifying visualsemantic embeddings with multimodal neural language models
-
R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visualsemantic embeddings with multimodal neural language models. In NIPS, 2014.
-
(2014)
NIPS
-
-
Kiros, R.1
Salakhutdinov, R.2
Zemel, R.S.3
-
26
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
-
(2009)
Computer
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
27
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
28
-
-
84953837450
-
From visual attributes to adjectives through decompositional distributional semantics
-
A. Lazaridou, G. Dinu, A. Liska, and M. Baroni. From visual attributes to adjectives through decompositional distributional semantics. TACL, 2015.
-
(2015)
TACL
-
-
Lazaridou, A.1
Dinu, G.2
Liska, A.3
Baroni, M.4
-
29
-
-
84887327253
-
Harvesting mid-level visual concepts from large-scale internet images
-
Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013.
-
(2013)
CVPR
-
-
Li, Q.1
Wu, J.2
Tu, Z.3
-
30
-
-
85009931853
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV. 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
31
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. JMLR, 2010.
-
(2010)
JMLR
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
32
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
-
(2013)
NIPS
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
33
-
-
84898828265
-
From large scale image categorization to entry-level categories
-
V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. Berg. From large scale image categorization to entry-level categories. In ICCV, 2013.
-
(2013)
ICCV
-
-
Ordonez, V.1
Deng, J.2
Choi, Y.3
Berg, A.C.4
Berg, T.5
-
34
-
-
85162522202
-
Im2text: Describing images using 1 million captioned photographs
-
V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011.
-
(2011)
NIPS
-
-
Ordonez, V.1
Kulkarni, G.2
Berg, T.L.3
-
35
-
-
84945944033
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, pages 1-42, 2014.
-
(2014)
IJCV
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
36
-
-
77955111164
-
Unsupervised learning of visual sense models for polysemous words
-
K. Saenko and T. Darrell. Unsupervised learning of visual sense models for polysemous words. In NIPS, 2009.
-
(2009)
NIPS
-
-
Saenko, K.1
Darrell, T.2
-
37
-
-
80052905403
-
Learning to share visual appearance for multiclass object detection
-
R. Salakhutdinov, A. Torralba, and J. Tenenbaum. Learning to share visual appearance for multiclass object detection. In CVPR, 2011.
-
(2011)
CVPR
-
-
Salakhutdinov, R.1
Torralba, A.2
Tenenbaum, J.3
-
39
-
-
1942516801
-
Weighted low-rank approximations
-
N. Srebro, T. Jaakkola, et al. Weighted low-rank approximations. In ICML, 2003.
-
(2003)
ICML
-
-
Srebro, N.1
Jaakkola, T.2
-
40
-
-
77956208065
-
Training and testing of recommender systems on data missing not at random
-
H. Steck. Training and testing of recommender systems on data missing not at random. In KDD, 2010.
-
(2010)
KDD
-
-
Steck, H.1
-
41
-
-
85009879494
-
-
arXiv preprint arXiv:1409.4842
-
C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
42
-
-
84867116137
-
Multilabel classification with principal label space transformation
-
F. Tai and H.-T. Lin. Multilabel classification with principal label space transformation. Neural Computation, 2012.
-
(2012)
Neural Computation
-
-
Tai, F.1
Lin, H.-T.2
-
43
-
-
84907025192
-
Incremental and decremental training for linear classification
-
C.-H. Tsai, C.-Y. Lin, and C.-J. Lin. Incremental and decremental training for linear classification. In KDD, 2014.
-
(2014)
KDD
-
-
Tsai, C.-H.1
Lin, C.-Y.2
Lin, C.-J.3
-
44
-
-
84863058545
-
Largescale image annotation using visual synset
-
D. Tsai, Y. Jing, Y. Liu, H. Rowley, S. Ioffe, J. M. Rehg, et al. Largescale image annotation using visual synset. In ICCV, 2011.
-
(2011)
ICCV
-
-
Tsai, D.1
Jing, Y.2
Liu, Y.3
Rowley, H.4
Ioffe, S.5
Rehg, J.M.6
-
46
-
-
84867117593
-
Wsabie: Scaling up to large vocabulary image annotation
-
J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
-
(2011)
IJCAI
-
-
Weston, J.1
Bengio, S.2
Usunier, N.3
-
47
-
-
84906494296
-
From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
-
P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2014.
-
(2014)
TACL
-
-
Young, P.1
Lai, A.2
Hodosh, M.3
Hockenmaier, J.4
-
48
-
-
84919793029
-
Large-scale multi-label learning with missing labels
-
H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale multi-label learning with missing labels. In ICML, 2013.
-
(2013)
ICML
-
-
Yu, H.-F.1
Jain, P.2
Kar, P.3
Dhillon, I.S.4
-
49
-
-
84913592052
-
Start from scratch: Towards automatically identifying, modeling, and naming visual attributes
-
H. Zhang, Y. Yang, H. Luan, S. Yang, and T.-S. Chua. Start from scratch: Towards automatically identifying, modeling, and naming visual attributes. In MM, 2014.
-
(2014)
MM
-
-
Zhang, H.1
Yang, Y.2
Luan, H.3
Yang, S.4
Chua, T.-S.5
|