메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 127-135

The global patch collider

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL EFFICIENCY; COMPUTER VISION; FORESTRY; HASH FUNCTIONS; HIGH ENERGY PHYSICS; MOTION ESTIMATION; PATTERN RECOGNITION; PIXELS; STEREO IMAGE PROCESSING; TREES (MATHEMATICS);

EID: 84986275163     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.21     Document Type: Conference Paper
Times cited : (39)

References (39)
  • 1
    • 85009900691 scopus 로고    scopus 로고
    • Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation
    • 1, 4, 6
    • C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. In ICCV.
    • ICCV
    • Bailer, C.1    Taetz, B.2    Stricker, D.3
  • 2
    • 84908235058 scopus 로고    scopus 로고
    • Fast edge-preserving patchmatch for large displacement optical flow
    • 1, 2
    • L. Bao, Q. Yang, and H. Jin. Fast edge-preserving patchmatch for large displacement optical flow. In TIP, 2014.
    • (2014) TIP
    • Bao, L.1    Yang, Q.2    Jin, H.3
  • 4
    • 84898409565 scopus 로고    scopus 로고
    • Patchmatch stereostereo matching with slanted support windows
    • 1, 6, 8
    • M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereostereo matching with slanted support windows. In BMVC, 2011.
    • (2011) BMVC
    • Bleyer, M.1    Rhemann, C.2    Rother, C.3
  • 5
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • 2, 4
    • A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007.
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 6
    • 84973902497 scopus 로고    scopus 로고
    • Dense semantic correspondence where every pixel is a classifier
    • 1
    • H. Bristow, J. Valmadre, and S. Lucey. Dense semantic correspondence where every pixel is a classifier. In ICCV, 2015.
    • (2015) ICCV
    • Bristow, H.1    Valmadre, J.2    Lucey, S.3
  • 7
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • 1, 6
    • T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. In PAMI, 2011.
    • (2011) PAMI
    • Brox, T.1    Malik, J.2
  • 8
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • 3, 6
    • D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
    • (2012) ECCV
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 9
    • 84887336889 scopus 로고    scopus 로고
    • Large displacement optical flow from nearest neighbor fields
    • 1, 2
    • Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. In CVPR, 2013.
    • (2013) CVPR
    • Chen, Z.1    Jin, H.2    Lin, Z.3    Cohen, S.4    Wu, Y.5
  • 10
    • 84867884768 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • 2, 3
    • A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. In Now, 2012.
    • (2012) Now
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 11
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • 6
    • M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SOCG, 2004.
    • (2004) SOCG
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4
  • 12
    • 85009835545 scopus 로고    scopus 로고
    • Combinatorial regularization of descriptor matching for optical flow estimation
    • 6
    • B. Drayer and T. Brox. Combinatorial regularization of descriptor matching for optical flow estimation. In BMVC, 2015.
    • (2015) BMVC
    • Drayer, B.1    Brox, T.2
  • 17
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving the kitti vision benchmark suite
    • 6, 7
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving the kitti vision benchmark suite. In CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 18
    • 84866668394 scopus 로고    scopus 로고
    • Computing nearest-neighbor fields via propagation-assisted kd-trees
    • 1, 2
    • K. He and J. Sun. Computing nearest-neighbor fields via propagation-assisted kd-trees. In CVPR, 2012.
    • (2012) CVPR
    • He, K.1    Sun, J.2
  • 19
    • 84959236681 scopus 로고    scopus 로고
    • Optical flow with geometric occlusion estimation and fusion of multiple frames
    • 6
    • R. Kennedy and C. J. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. In EMMCVPR, 2015.
    • (2015) EMMCVPR
    • Kennedy, R.1    Taylor, C.J.2
  • 20
    • 77956505702 scopus 로고    scopus 로고
    • Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme
    • 1, 6
    • B. Kitt, A. Geiger, and H. Lategahn. Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In IV, 2010.
    • (2010) IV
    • Kitt, B.1    Geiger, A.2    Lategahn, H.3
  • 22
    • 84856670335 scopus 로고    scopus 로고
    • Coherency sensitive hashing
    • 1, 2, 6
    • S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.
    • (2011) ICCV
    • Korman, S.1    Avidan, S.2
  • 24
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • 1, 6
    • D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 25
    • 84986312352 scopus 로고    scopus 로고
    • Discrete optimization for optical flow
    • 1, 6
    • M. Menze, C. Heipke, and A. Geiger. Discrete optimization for optical flow. In GCPR, 2015.
    • (2015) GCPR
    • Menze, M.1    Heipke, C.2    Geiger, A.3
  • 26
    • 84959237250 scopus 로고    scopus 로고
    • Epicflow: Edge-preserving interpolation of correspondences for optical flow
    • 4, 6, 7
    • J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation of correspondences for optical flow. In CVPR, 2015.
    • (2015) CVPR
    • Revaud, J.1    Weinzaepfel, P.2    Harchaoui, Z.3    Schmid, C.4
  • 27
    • 34247572097 scopus 로고    scopus 로고
    • On the spatial statistics of optical flow
    • 2
    • S. Roth and M. J. Black. On the spatial statistics of optical flow. In IJCV, 2007.
    • (2007) IJCV
    • Roth, S.1    Black, M.J.2
  • 30
    • 84904175757 scopus 로고    scopus 로고
    • Learning local feature descriptors using convex optimisation
    • 1
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. In PAMI, 2014.
    • (2014) PAMI
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 31
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • 1
    • S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 33
    • 77955989832 scopus 로고    scopus 로고
    • Secrets of optical flow estimation and their principles
    • 6
    • D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. In CVPR, 2010.
    • (2010) CVPR
    • Sun, D.1    Roth, S.2    Black, M.J.3
  • 34
    • 77949875753 scopus 로고    scopus 로고
    • Daisy: An efficient dense descriptor applied to wide-baseline stereo
    • 1, 6, 8
    • E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo. In PAMI, 2010.
    • (2010) PAMI
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 36
    • 84898830536 scopus 로고    scopus 로고
    • Deepflow: Large displacement optical flow with deep matching
    • 1, 6, 7
    • P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large displacement optical flow with deep matching. In ICCV, 2013.
    • (2013) ICCV
    • Weinzaepfel, P.1    Revaud, J.2    Harchaoui, Z.3    Schmid, C.4
  • 37
    • 84865609390 scopus 로고    scopus 로고
    • Motion detail preserving optical flow estimation
    • 1, 6
    • L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. In PAMI, 2012.
    • (2012) PAMI
    • Xu, L.1    Jia, J.2    Matsushita, Y.3
  • 38
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks
    • 1, 2
    • S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Zagoruyko, S.1    Komodakis, N.2
  • 39
    • 84952674245 scopus 로고    scopus 로고
    • Computing the stereo matching cost with a convolutional neural network
    • 1
    • J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. In CVPR, 2015.
    • (2015) CVPR
    • Zbontar, J.1    LeCun, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.