-
1
-
-
85009900691
-
Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation
-
1, 4, 6
-
C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. In ICCV.
-
ICCV
-
-
Bailer, C.1
Taetz, B.2
Stricker, D.3
-
2
-
-
84908235058
-
Fast edge-preserving patchmatch for large displacement optical flow
-
1, 2
-
L. Bao, Q. Yang, and H. Jin. Fast edge-preserving patchmatch for large displacement optical flow. In TIP, 2014.
-
(2014)
TIP
-
-
Bao, L.1
Yang, Q.2
Jin, H.3
-
4
-
-
84898409565
-
Patchmatch stereostereo matching with slanted support windows
-
1, 6, 8
-
M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereostereo matching with slanted support windows. In BMVC, 2011.
-
(2011)
BMVC
-
-
Bleyer, M.1
Rhemann, C.2
Rother, C.3
-
5
-
-
50649101132
-
Image classification using random forests and ferns
-
2, 4
-
A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007.
-
(2007)
ICCV
-
-
Bosch, A.1
Zisserman, A.2
Munoz, X.3
-
6
-
-
84973902497
-
Dense semantic correspondence where every pixel is a classifier
-
1
-
H. Bristow, J. Valmadre, and S. Lucey. Dense semantic correspondence where every pixel is a classifier. In ICCV, 2015.
-
(2015)
ICCV
-
-
Bristow, H.1
Valmadre, J.2
Lucey, S.3
-
7
-
-
79551562584
-
Large displacement optical flow: Descriptor matching in variational motion estimation
-
1, 6
-
T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. In PAMI, 2011.
-
(2011)
PAMI
-
-
Brox, T.1
Malik, J.2
-
8
-
-
84887338408
-
A naturalistic open source movie for optical flow evaluation
-
3, 6
-
D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
-
(2012)
ECCV
-
-
Butler, D.J.1
Wulff, J.2
Stanley, G.B.3
Black, M.J.4
-
9
-
-
84887336889
-
Large displacement optical flow from nearest neighbor fields
-
1, 2
-
Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. In CVPR, 2013.
-
(2013)
CVPR
-
-
Chen, Z.1
Jin, H.2
Lin, Z.3
Cohen, S.4
Wu, Y.5
-
10
-
-
84867884768
-
Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
-
2, 3
-
A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. In Now, 2012.
-
(2012)
Now
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
11
-
-
4544259509
-
Locality-sensitive hashing scheme based on p-stable distributions
-
6
-
M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In SOCG, 2004.
-
(2004)
SOCG
-
-
Datar, M.1
Immorlica, N.2
Indyk, P.3
Mirrokni, V.S.4
-
12
-
-
85009835545
-
Combinatorial regularization of descriptor matching for optical flow estimation
-
6
-
B. Drayer and T. Brox. Combinatorial regularization of descriptor matching for optical flow estimation. In BMVC, 2015.
-
(2015)
BMVC
-
-
Drayer, B.1
Brox, T.2
-
13
-
-
84905731361
-
Learning to be a depth camera for close-range human capture and interaction
-
2
-
S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim, D. Sweeney, A. Criminisi, J. Shotton, S. Kang, and T. Paek. Learning to be a depth camera for close-range human capture and interaction. In ACM SIGGRAPH and Transaction On Graphics, 2014.
-
(2014)
ACM SIGGRAPH and Transaction on Graphics
-
-
Fanello, S.R.1
Keskin, C.2
Izadi, S.3
Kohli, P.4
Kim, D.5
Sweeney, D.6
Criminisi, A.7
Shotton, J.8
Kang, S.9
Paek, T.10
-
14
-
-
84911445494
-
Filter forests for learning data-dependent convolutional kernels
-
2
-
S. R. Fanello, C. Keskin, P. Kohli, S. Izadi, J. Shotton, A. Criminisi, U. Pattacini, and T. Paek. Filter forests for learning data-dependent convolutional kernels. In CVPR, 2014.
-
(2014)
CVPR
-
-
Fanello, S.R.1
Keskin, C.2
Kohli, P.3
Izadi, S.4
Shotton, J.5
Criminisi, A.6
Pattacini, U.7
Paek, T.8
-
15
-
-
84986245728
-
Hyperdepth: Learning depth from structured light without matching
-
2, 7
-
S. R. Fanello, C. Rhemann, V. Tankovich, A. Kowdle, S. Orts Escolano, D. Kim, and S. Izadi. Hyperdepth: Learning depth from structured light without matching. In CVPR, 2016.
-
(2016)
CVPR
-
-
Fanello, S.R.1
Rhemann, C.2
Tankovich, V.3
Kowdle, A.4
Orts Escolano, S.5
Kim, D.6
Izadi, S.7
-
16
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
2
-
P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazrbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Fischer, P.1
Dosovitskiy, A.2
Ilg, E.3
Häusser, P.4
Hazrbas, C.5
Golkov, V.6
Der Van Smagt, P.7
Cremers, D.8
Brox, T.9
-
17
-
-
84866704163
-
Are we ready for autonomous driving the kitti vision benchmark suite
-
6, 7
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving the kitti vision benchmark suite. In CVPR, 2012.
-
(2012)
CVPR
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
18
-
-
84866668394
-
Computing nearest-neighbor fields via propagation-assisted kd-trees
-
1, 2
-
K. He and J. Sun. Computing nearest-neighbor fields via propagation-assisted kd-trees. In CVPR, 2012.
-
(2012)
CVPR
-
-
He, K.1
Sun, J.2
-
19
-
-
84959236681
-
Optical flow with geometric occlusion estimation and fusion of multiple frames
-
6
-
R. Kennedy and C. J. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. In EMMCVPR, 2015.
-
(2015)
EMMCVPR
-
-
Kennedy, R.1
Taylor, C.J.2
-
20
-
-
77956505702
-
Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme
-
1, 6
-
B. Kitt, A. Geiger, and H. Lategahn. Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In IV, 2010.
-
(2010)
IV
-
-
Kitt, B.1
Geiger, A.2
Lategahn, H.3
-
21
-
-
84877730104
-
Context-sensitive decision forests for object detection
-
2
-
P. Kontschieder, S. R. Bulò, A. Criminisi, P. Kohli, M. Pelillo, and H. Bischof. Context-sensitive decision forests for object detection. In NIPS, 2012.
-
(2012)
NIPS
-
-
Kontschieder, P.1
Bulò, S.R.2
Criminisi, A.3
Kohli, P.4
Pelillo, M.5
Bischof, H.6
-
22
-
-
84856670335
-
Coherency sensitive hashing
-
1, 2, 6
-
S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.
-
(2011)
ICCV
-
-
Korman, S.1
Avidan, S.2
-
24
-
-
0033284915
-
Object recognition from local scale-invariant features
-
1, 6
-
D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, 1999.
-
(1999)
ICCV
-
-
Lowe, D.G.1
-
25
-
-
84986312352
-
Discrete optimization for optical flow
-
1, 6
-
M. Menze, C. Heipke, and A. Geiger. Discrete optimization for optical flow. In GCPR, 2015.
-
(2015)
GCPR
-
-
Menze, M.1
Heipke, C.2
Geiger, A.3
-
26
-
-
84959237250
-
Epicflow: Edge-preserving interpolation of correspondences for optical flow
-
4, 6, 7
-
J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation of correspondences for optical flow. In CVPR, 2015.
-
(2015)
CVPR
-
-
Revaud, J.1
Weinzaepfel, P.2
Harchaoui, Z.3
Schmid, C.4
-
27
-
-
34247572097
-
On the spatial statistics of optical flow
-
2
-
S. Roth and M. J. Black. On the spatial statistics of optical flow. In IJCV, 2007.
-
(2007)
IJCV
-
-
Roth, S.1
Black, M.J.2
-
28
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
2
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011.
-
(2011)
CVPR
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
29
-
-
84973915418
-
Discriminative learning of deep convolutional feature point descriptors
-
1, 2
-
E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. M. Noguer. Discriminative learning of deep convolutional feature point descriptors. In ICCV, 2015.
-
(2015)
ICCV
-
-
Simo-Serra, E.1
Trulls, E.2
Ferraz, L.3
Kokkinos, I.4
Fua, P.5
Noguer, F.M.6
-
30
-
-
84904175757
-
Learning local feature descriptors using convex optimisation
-
1
-
K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local feature descriptors using convex optimisation. In PAMI, 2014.
-
(2014)
PAMI
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
31
-
-
84884958786
-
Unsupervised discovery of mid-level discriminative patches
-
1
-
S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
-
(2012)
ECCV
-
-
Singh, S.1
Gupta, A.2
Efros, A.3
-
33
-
-
77955989832
-
Secrets of optical flow estimation and their principles
-
6
-
D. Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. In CVPR, 2010.
-
(2010)
CVPR
-
-
Sun, D.1
Roth, S.2
Black, M.J.3
-
34
-
-
77949875753
-
Daisy: An efficient dense descriptor applied to wide-baseline stereo
-
1, 6, 8
-
E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo. In PAMI, 2010.
-
(2010)
PAMI
-
-
Tola, E.1
Lepetit, V.2
Fua, P.3
-
36
-
-
84898830536
-
Deepflow: Large displacement optical flow with deep matching
-
1, 6, 7
-
P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large displacement optical flow with deep matching. In ICCV, 2013.
-
(2013)
ICCV
-
-
Weinzaepfel, P.1
Revaud, J.2
Harchaoui, Z.3
Schmid, C.4
-
37
-
-
84865609390
-
Motion detail preserving optical flow estimation
-
1, 6
-
L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. In PAMI, 2012.
-
(2012)
PAMI
-
-
Xu, L.1
Jia, J.2
Matsushita, Y.3
-
38
-
-
84959179619
-
Learning to compare image patches via convolutional neural networks
-
1, 2
-
S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zagoruyko, S.1
Komodakis, N.2
-
39
-
-
84952674245
-
Computing the stereo matching cost with a convolutional neural network
-
1
-
J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zbontar, J.1
LeCun, Y.2
|