메뉴 건너뛰기




Volumn 16, Issue 1, 2016, Pages

Joint modelling of time-to-event and multivariate longitudinal outcomes: Recent developments and issues

Author keywords

Joint models; Longitudinal data; Multivariate data; Software; Time to event data

Indexed keywords

ALGORITHM; BAYES THEOREM; CLINICAL DECISION MAKING; HUMAN; LONGITUDINAL STUDY; MULTIVARIATE ANALYSIS; OUTCOME ASSESSMENT; PROCEDURES; REPRODUCIBILITY; STATISTICS AND NUMERICAL DATA; THEORETICAL MODEL; TIME FACTOR;

EID: 84985995587     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/s12874-016-0212-5     Document Type: Article
Times cited : (155)

References (89)
  • 1
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • 1:STN:280:DyaL3s7nvFWlsg%3D%3D 7168798
    • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963-74.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 2
  • 3
    • 77954944281 scopus 로고    scopus 로고
    • Basic concepts and methods for joint models of longitudinal and survival data
    • 20439643 4503792
    • Ibrahim JG, Chu H, Chen LM. Basic concepts and methods for joint models of longitudinal and survival data. J Clin Oncol. 2010;28:2796-801.
    • (2010) J Clin Oncol , vol.28 , pp. 2796-2801
    • Ibrahim, J.G.1    Chu, H.2    Chen, L.M.3
  • 5
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • 1:STN:280:DyaK2s3islKhsQ%3D%3D 9147598
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;53:330-9.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 6
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • 1:STN:280:DC%2BD3szpsFequg%3D%3D 12933568
    • Henderson R, Diggle PJ, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000;1:465-80.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.J.2    Dobson, A.3
  • 7
    • 84924582911 scopus 로고    scopus 로고
    • Joint modelling of repeated measurement and time-to-event data: An introductory tutorial
    • Asar O, Ritchie J, Kalra P, Diggle PJ. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. Int. J. Epidemiol. 2015; 1-11.
    • (2015) Int. J. Epidemiol. , pp. 1-11
    • Asar, O.1    Ritchie, J.2    Kalra, P.3    Diggle, P.J.4
  • 8
    • 0036618247 scopus 로고    scopus 로고
    • Joint modeling of event time and nonignorable missing longitudinal data
    • 12048867
    • Dupuy J-F, Mesbah M. Joint modeling of event time and nonignorable missing longitudinal data. Lifetime Data Anal. 2002;8:99-115.
    • (2002) Lifetime Data Anal , vol.8 , pp. 99-115
    • Dupuy, J.-F.1    Mesbah, M.2
  • 9
    • 0442310599 scopus 로고
    • Modeling a marker of disease progression and onset of disease
    • N. Jewell K. Dietz V.T. Farewell (eds) Birkhauser Boston
    • Self S, Pawitan Y. Modeling a marker of disease progression and onset of disease. In: Jewell NP, Dietz K, Farewell VT, editors. AIDS Epidemiol. Methodol Issues. Boston: Birkhauser; 1992.
    • (1992) AIDS Epidemiol. Methodol Issues
    • Self, S.1    Pawitan, Y.2
  • 10
    • 21844506206 scopus 로고
    • Modeling the relationship of survival to longitudinal data measured with error - Applications to survival and CD4 counts in patients with AIDS
    • Tsiatis AA, DeGruttola V, Wulfsohn MS. Modeling the relationship of survival to longitudinal data measured with error - applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc. 1995;90:27-37.
    • (1995) J Am Stat Assoc , vol.90 , pp. 27-37
    • Tsiatis, A.A.1    DeGruttola, V.2    Wulfsohn, M.S.3
  • 11
    • 0031802268 scopus 로고    scopus 로고
    • Increasing efficiency from censored survival data by using random effects to model longitudinal covariates
    • 1:STN:280:DyaK1c7psVCmuw%3D%3D 9533260
    • Hogan JW, Laird NM. Increasing efficiency from censored survival data by using random effects to model longitudinal covariates. Stat Methods Med Res. 1998;7:28-48.
    • (1998) Stat Methods Med Res , vol.7 , pp. 28-48
    • Hogan, J.W.1    Laird, N.M.2
  • 13
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • 1:STN:280:DyaK2s7lvVWiug%3D%3D 9004396
    • Hogan JW, Laird NM. Model-based approaches to analysing incomplete longitudinal and failure time data. Stat Med. 1997;16:259-72.
    • (1997) Stat Med , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 14
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin. 2004;14:809-34.
    • (2004) Stat Sin , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 15
    • 84930151542 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal non-survival data: Current methods and issues. Report of the DIA Bayesian joint modeling working group
    • Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G, Micallef S, Bois FY. Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group. Stat Med. 2015;34:2181-95.
    • (2015) Stat Med , vol.34 , pp. 2181-2195
    • Gould, A.L.1    Boye, M.E.2    Crowther, M.J.3    Ibrahim, J.G.4    Quartey, G.5    Micallef, S.6    Bois, F.Y.7
  • 16
    • 4143129859 scopus 로고    scopus 로고
    • Differences in HIV RNA levels before the initiation of antiretroviral therapy among 1864 individuals with known HIV-1 seroconversion dates
    • 1:CAS:528:DC%2BD2cXlvF2ks7k%3D 15280781
    • Touloumi G, Pantazis N, Babiker AG, Walker SA, Katsarou O, Karafoulidou A, Hatzakis A, Porter K. Differences in HIV RNA levels before the initiation of antiretroviral therapy among 1864 individuals with known HIV-1 seroconversion dates. AIDS. 2004;18:1697-705.
    • (2004) AIDS , vol.18 , pp. 1697-1705
    • Touloumi, G.1    Pantazis, N.2    Babiker, A.G.3    Walker, S.A.4    Katsarou, O.5    Karafoulidou, A.6    Hatzakis, A.7    Porter, K.8
  • 17
    • 84923581216 scopus 로고    scopus 로고
    • A joint model for repeated events of different types and multiple longitudinal outcomes with application to a follow-up study of patients after kidney transplant
    • Musoro JZ, Geskus RB, Zwinderman AH. A joint model for repeated events of different types and multiple longitudinal outcomes with application to a follow-up study of patients after kidney transplant. Biometrical J. 2014;57:185-200.
    • (2014) Biometrical J , vol.57 , pp. 185-200
    • Musoro, J.Z.1    Geskus, R.B.2    Zwinderman, A.H.3
  • 18
    • 84908068702 scopus 로고    scopus 로고
    • Bayesian hierarchical model for multiple repeated measures and survival data: An application to Parkinson's disease
    • 24935619 4184935
    • Luo S, Wang J. Bayesian hierarchical model for multiple repeated measures and survival data: an application to Parkinson's disease. Stat Med. 2014;33:4279-91.
    • (2014) Stat Med , vol.33 , pp. 4279-4291
    • Luo, S.1    Wang, J.2
  • 19
    • 3442883055 scopus 로고    scopus 로고
    • Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials
    • Ibrahim JG, Chen M-H, Sinha D. Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials. Stat Sin. 2004;14:863-83.
    • (2004) Stat Sin , vol.14 , pp. 863-883
    • Ibrahim, J.G.1    Chen, M.-H.2    Sinha, D.3
  • 20
    • 48249105097 scopus 로고    scopus 로고
    • Application of a joint multivariate longitudinal-survival analysis to examine the terminal decline hypothesis in the Swiss Interdisciplinary Longitudinal Study on the Oldest Old
    • Ghisletta P. Application of a joint multivariate longitudinal-survival analysis to examine the terminal decline hypothesis in the Swiss Interdisciplinary Longitudinal Study on the Oldest Old. J Gerontol B Psychol Sci Soc Sci. 2008;63:185-P192.
    • (2008) J Gerontol B Psychol Sci Soc Sci , vol.63 , pp. P185-P192
    • Ghisletta, P.1
  • 21
    • 84930516239 scopus 로고    scopus 로고
    • Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients
    • 1:CAS:528:DC%2BC2MXjtlCgtLs%3D 25136844
    • Battes LC, Caliskan K, Rizopoulos D, Constantinescu AA, Robertus JL, Akkerhuis M, Manintveld OC, Boersma E, Kardys I. Repeated measurements of NT-pro-B-type natriuretic peptide, troponin T or C-reactive protein do not predict future allograft rejection in heart transplant recipients. Transplantation. 2015;99:580-5.
    • (2015) Transplantation , vol.99 , pp. 580-585
    • Battes, L.C.1    Caliskan, K.2    Rizopoulos, D.3    Constantinescu, A.A.4    Robertus, J.L.5    Akkerhuis, M.6    Manintveld, O.C.7    Boersma, E.8    Kardys, I.9
  • 22
    • 84875649987 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and survival data
    • Crowther MJ, Abrams KR, Lambert PC. Joint modeling of longitudinal and survival data. Stata J. 2013;13:165-84.
    • (2013) Stata J , vol.13 , pp. 165-184
    • Crowther, M.J.1    Abrams, K.R.2    Lambert, P.C.3
  • 23
    • 1342289473 scopus 로고    scopus 로고
    • Separate and joint modeling of longitudinal and event time data using standard computer packages
    • Guo X, Carlin BP. Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat. 2004;58:16-24.
    • (2004) Am Stat , vol.58 , pp. 16-24
    • Guo, X.1    Carlin, B.P.2
  • 26
    • 84985929974 scopus 로고    scopus 로고
    • JMFit: A SAS macro for joint models of longitudinal and survival data
    • Zhang D, Chen M-H, Ibrahim JG, Boye ME, Shen W. JMFit: a SAS macro for joint models of longitudinal and survival data. J Stat Softw. 2009;30:1-3.
    • (2009) J Stat Softw , vol.30 , pp. 1-3
    • Zhang, D.1    Chen, M.-H.2    Ibrahim, J.G.3    Boye, M.E.4    Shen, W.5
  • 27
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos D. JM: an R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw. 2010;35:1-33.
    • (2010) J Stat Softw , vol.35 , pp. 1-33
    • Rizopoulos, D.1
  • 29
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • 21337596
    • Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011;30:1366-80.
    • (2011) Stat Med , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 31
    • 79955398944 scopus 로고    scopus 로고
    • A review on joint modelling of longitudinal measurements and time-to-event
    • Sousa I. A review on joint modelling of longitudinal measurements and time-to-event. Revstat Stat J. 2011;9:57-81.
    • (2011) Revstat Stat J , vol.9 , pp. 57-81
    • Sousa, I.1
  • 32
    • 84883157185 scopus 로고    scopus 로고
    • Advances in joint modelling: A review of recent developments with application to the survival of end stage renal disease patients
    • McCrink LM, Marshall AH, Cairns KJ. Advances in joint modelling: A review of recent developments with application to the survival of end stage renal disease patients. Int Stat Rev. 2013;81:249-69.
    • (2013) Int Stat Rev , vol.81 , pp. 249-269
    • McCrink, L.M.1    Marshall, A.H.2    Cairns, K.J.3
  • 34
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models
    • Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc. 1999;94:1096-120.
    • (1999) J Am Stat Assoc , vol.94 , pp. 1096-1120
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 35
    • 48049105068 scopus 로고    scopus 로고
    • Joint modelling of repeated measurements and time-to-event outcomes: The fourth Armitage lecture
    • 18041047
    • Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Stat Med. 2008;27:2981-98.
    • (2008) Stat Med , vol.27 , pp. 2981-2998
    • Diggle, P.J.1    Sousa, I.2    Chetwynd, A.G.3
  • 36
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little RJA. Modeling the drop-out mechanism in repeated-measures studies. J. Am. Stat. Assoc. 1995. 1112-1121.
    • (1995) J. Am. Stat. Assoc. , pp. 1112-1121
    • Little, R.J.A.1
  • 37
    • 0037199763 scopus 로고    scopus 로고
    • Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables
    • 12210621
    • Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med. 2002;21:2369-82.
    • (2002) Stat Med , vol.21 , pp. 2369-2382
    • Lin, H.1    McCulloch, C.E.2    Mayne, S.T.3
  • 38
    • 2342525727 scopus 로고    scopus 로고
    • An estimator for the proportional hazards model with multiple longitudinal covariates measured with error
    • 12933595
    • Song X, Davidian M, Tsiatis AA. An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics. 2002;3:511-28.
    • (2002) Biostatistics , vol.3 , pp. 511-528
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 39
    • 15044356987 scopus 로고    scopus 로고
    • A flexible B-spline model for multiple longitudinal biomarkers and survival
    • 15737079
    • Brown ER, Ibrahim JG, DeGruttola V. A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics. 2005;61:64-73.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3
  • 40
    • 14544307431 scopus 로고    scopus 로고
    • Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs
    • Pantazis N, Touloumi G, Walker SA, Babiker AG. Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs. J R Stat Soc: Ser C: Appl Stat. 2005;54:405-23.
    • (2005) J R Stat Soc: Ser C: Appl Stat , vol.54 , pp. 405-423
    • Pantazis, N.1    Touloumi, G.2    Walker, S.A.3    Babiker, A.G.4
  • 41
    • 11344266599 scopus 로고    scopus 로고
    • Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection
    • 15523706
    • Thiébaut R, Jacqmin-Gadda H, Babiker AG, Commenges D. Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection. Stat Med. 2005;24:65-82.
    • (2005) Stat Med , vol.24 , pp. 65-82
    • Thiébaut, R.1    Jacqmin-Gadda, H.2    Babiker, A.G.3    Commenges, D.4
  • 42
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • 16918907
    • Chi YY, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics. 2006;62:432-45.
    • (2006) Biometrics , vol.62 , pp. 432-445
    • Chi, Y.Y.1    Ibrahim, J.G.2
  • 43
    • 38849201041 scopus 로고    scopus 로고
    • Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: A simulation study
    • 18058854
    • Pantazis N, Touloumi G. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: a simulation study. Stat Med. 2007;26:5473-85.
    • (2007) Stat Med , vol.26 , pp. 5473-5485
    • Pantazis, N.1    Touloumi, G.2
  • 44
    • 48749115069 scopus 로고    scopus 로고
    • Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts
    • Dantan E, Proust-Lima C, Letenneur L, Jacqmin-Gadda H. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. Int J Biostat. 2008;4:1-26.
    • (2008) Int J Biostat , vol.4 , pp. 1-26
    • Dantan, E.1    Proust-Lima, C.2    Letenneur, L.3    Jacqmin-Gadda, H.4
  • 45
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • Proust-Lima C, Joly P, Dartigues J-F, Jacqmin-Gadda H. Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach. Comput Stat Data Anal. 2009;53:1142-54.
    • (2009) Comput Stat Data Anal , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Dartigues, J.-F.3    Jacqmin-Gadda, H.4
  • 46
    • 84862864996 scopus 로고    scopus 로고
    • An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data
    • 21938267 3175771
    • Albert PS, Shih JH. An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. Ann Appl Stat. 2010;4:1517-32.
    • (2010) Ann Appl Stat , vol.4 , pp. 1517-1532
    • Albert, P.S.1    Shih, J.H.2
  • 47
    • 84985909786 scopus 로고    scopus 로고
    • A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials
    • Liu F, Li Q. A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Stat Methods Med Res. 2014;0:1-13.
    • (2014) Stat Methods Med Res , pp. 1-13
    • Liu, F.1    Li, Q.2
  • 48
    • 85006962071 scopus 로고    scopus 로고
    • Joint multiple imputation for longitudinal outcomes and clinical events that truncate longitudinal follow-up
    • Hu B, Li L, Greene T. Joint multiple imputation for longitudinal outcomes and clinical events that truncate longitudinal follow-up. Stat. Med. 2015
    • (2015) Stat. Med.
    • Hu, B.1    Li, L.2    Greene, T.3
  • 49
    • 84921487298 scopus 로고    scopus 로고
    • Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data
    • Tang AM, Tang NS. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data. Stat Med. 2015; 34: 824-843.
    • (2015) Stat Med. , vol.34 , pp. 824-843
    • Tang, A.M.1    Tang, N.S.2
  • 50
    • 79952578661 scopus 로고    scopus 로고
    • Slope estimation for bivariate longitudinal outcomes adjusting for informative right censoring by using a discrete survival model: Application to the renal transplant cohort
    • 21533000 3082945
    • Jaffa MA, Woolson RF, Lipsitz SR. Slope estimation for bivariate longitudinal outcomes adjusting for informative right censoring by using a discrete survival model: application to the renal transplant cohort. J R Stat Soc Ser A Stat Soc. 2011;174:387-402.
    • (2011) J R Stat Soc ser A Stat Soc , vol.174 , pp. 387-402
    • Jaffa, M.A.1    Woolson, R.F.2    Lipsitz, S.R.3
  • 51
    • 84985904566 scopus 로고    scopus 로고
    • A Joint modeling approach for right censored high dimensiondal multivariate longitudinal data
    • Jaffa MA, Gebregziabher M, Jaffa AA. A Joint modeling approach for right censored high dimensiondal multivariate longitudinal data. J Biometrics Biostat. 2014; 5.
    • (2014) J Biometrics Biostat. , vol.5
    • Ma, J.1    Gebregziabher, M.2    Jaffa, A.A.3
  • 52
    • 79952607034 scopus 로고    scopus 로고
    • Joint modeling of the clinical progression and of the biomarkers' dynamics using a mechanistic model
    • 20377577
    • Guedj J, Thiébaut R, Commenges D. Joint modeling of the clinical progression and of the biomarkers' dynamics using a mechanistic model. Biometrics. 2011;67:59-66.
    • (2011) Biometrics , vol.67 , pp. 59-66
    • Guedj, J.1    Thiébaut, R.2    Commenges, D.3
  • 53
    • 80051709085 scopus 로고    scopus 로고
    • Joint modeling of multiple longitudinal patient-reported outcomes and survival
    • 21830926 3212950
    • Hatfield LA, Boye ME, Carlin BP. Joint modeling of multiple longitudinal patient-reported outcomes and survival. J Biopharm Stat. 2011;21:971-91.
    • (2011) J Biopharm Stat , vol.21 , pp. 971-991
    • Hatfield, L.A.1    Boye, M.E.2    Carlin, B.P.3
  • 54
    • 84892481006 scopus 로고    scopus 로고
    • Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease
    • He B, Luo S. Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease. Stat Methods Med Res. 2013; 0: 1-13.
    • (2013) Stat Methods Med Res. , pp. 1-13
    • He, B.1    Luo, S.2
  • 55
    • 84892486309 scopus 로고    scopus 로고
    • A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time
    • 24009073
    • Luo S. A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time. Stat Med. 2014;33:580-94.
    • (2014) Stat Med , vol.33 , pp. 580-594
    • Luo, S.1
  • 57
    • 84954368071 scopus 로고    scopus 로고
    • Joint modelling of repeated multivariate cognitive measures and competing risks of dementia and death: A latent process and latent class approach
    • In press
    • Proust-Lima C, Dartigues J-F, Jacqmin-Gadda H. Joint modelling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach. Stat. Med. 2015. In press.
    • (2015) Stat. Med.
    • Proust-Lima, C.1    Dartigues, J.-F.2    Jacqmin-Gadda, H.3
  • 58
    • 0035106144 scopus 로고    scopus 로고
    • The evaluation of multiple surrogate endpoints
    • 1:STN:280:DC%2BD3MzmvVegsg%3D%3D 11252622
    • Xu J, Zeger SL. The evaluation of multiple surrogate endpoints. Biometrics. 2001;57:81-7.
    • (2001) Biometrics , vol.57 , pp. 81-87
    • Xu, J.1    Zeger, S.L.2
  • 60
    • 84901922514 scopus 로고    scopus 로고
    • Semiparametric Bayesian joint models of multivariate longitudinal and survival data
    • Tang NS, Tang AM, Pan DD. Semiparametric Bayesian joint models of multivariate longitudinal and survival data. Comput Stat Data Anal Elsevier BV. 2014;77:113-29.
    • (2014) Comput Stat Data Anal Elsevier BV , vol.77 , pp. 113-129
    • Tang, N.S.1    Tang, A.M.2    Pan, D.D.3
  • 61
    • 84961289138 scopus 로고    scopus 로고
    • A discrete time event-history approach to informative drop-out in multivariate latent Markov models with covariates
    • 25227970
    • Bartolucci F, Farcomeni A. A discrete time event-history approach to informative drop-out in multivariate latent Markov models with covariates. Biometrics. 2015;71:80-9.
    • (2015) Biometrics , vol.71 , pp. 80-89
    • Bartolucci, F.1    Farcomeni, A.2
  • 63
    • 45849092498 scopus 로고    scopus 로고
    • Predicting renal graft failure using multivariate longitudinal profiles
    • 18056686
    • Fieuws S, Verbeke G, Maes B, Vanrenterghem Y. Predicting renal graft failure using multivariate longitudinal profiles. Biostatistics. 2008;9:419-31.
    • (2008) Biostatistics , vol.9 , pp. 419-431
    • Fieuws, S.1    Verbeke, G.2    Maes, B.3    Vanrenterghem, Y.4
  • 64
    • 84901252859 scopus 로고    scopus 로고
    • Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach
    • Baghfalaki T, Ganjali M, Berridge D. Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach. J Appl Stat. 2014;41:1934-55.
    • (2014) J Appl Stat , vol.41 , pp. 1934-1955
    • Baghfalaki, T.1    Ganjali, M.2    Berridge, D.3
  • 65
    • 84902543523 scopus 로고    scopus 로고
    • Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data
    • 25214700 4157686
    • Choi J, Anderson SJ, Richards TJ, Thompson WK. Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data. J Appl Stat. 2014;41:2192-205.
    • (2014) J Appl Stat , vol.41 , pp. 2192-2205
    • Choi, J.1    Anderson, S.J.2    Richards, T.J.3    Thompson, W.K.4
  • 66
    • 0442280678 scopus 로고    scopus 로고
    • Latent variable model for joint analysis of multiple repeated measures and bivariate event times
    • Huang W, Zeger SL, Anthony JC, Garrett E. Latent variable model for joint analysis of multiple repeated measures and bivariate event times. J Am Stat Assoc. 2001;96:906-14.
    • (2001) J Am Stat Assoc , vol.96 , pp. 906-914
    • Huang, W.1    Zeger, S.L.2    Anthony, J.C.3    Garrett, E.4
  • 67
    • 0037080658 scopus 로고    scopus 로고
    • Item response models for joint analysis of quality of life and survival
    • 11782055
    • Wang C, Douglas J, Anderson S. Item response models for joint analysis of quality of life and survival. Stat Med. 2002;21:129-42.
    • (2002) Stat Med , vol.21 , pp. 129-142
    • Wang, C.1    Douglas, J.2    Anderson, S.3
  • 68
    • 84862853440 scopus 로고    scopus 로고
    • Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects
    • 22344869
    • Li N, Elashoff RM, Li G, Tseng CH. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Stat Med. 2012;31:1707-21.
    • (2012) Stat Med , vol.31 , pp. 1707-1721
    • Li, N.1    Elashoff, R.M.2    Li, G.3    Tseng, C.H.4
  • 69
    • 84886507897 scopus 로고    scopus 로고
    • Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: A Bayesian approach
    • Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biometrical J. 2013;55:844-65.
    • (2013) Biometrical J , vol.55 , pp. 844-865
    • Baghfalaki, T.1    Ganjali, M.2    Berridge, D.3
  • 70
    • 84866754019 scopus 로고    scopus 로고
    • Bayesian influence measures for joint models for longitudinal and survival data
    • 22385010 3496431
    • Zhu H, Ibrahim JG, Chi YY, Tang N. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics. 2012;68:954-64.
    • (2012) Biometrics , vol.68 , pp. 954-964
    • Zhu, H.1    Ibrahim, J.G.2    Chi, Y.Y.3    Tang, N.4
  • 71
    • 0036966285 scopus 로고    scopus 로고
    • A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    • 12495128
    • Song X, Davidian M, Tsiatis AA. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics. 2002;58:742-53.
    • (2002) Biometrics , vol.58 , pp. 742-753
    • Song, X.1    Davidian, M.2    Tsiatis, A.A.3
  • 72
    • 40249113335 scopus 로고    scopus 로고
    • Shared parameter models under random-effects misspecification
    • Rizopoulos D, Verbeke G, Molenberghs G. Shared parameter models under random-effects misspecification. Biometrika. 2008;95:63-74.
    • (2008) Biometrika , vol.95 , pp. 63-74
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 73
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • 12926706
    • Brown ER, Ibrahim JG. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics. 2003;59:221-8.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 74
    • 21344479762 scopus 로고    scopus 로고
    • Estimating normal means with a Dirichiet process prior
    • Escobar MD. Estimating normal means with a Dirichiet process prior. J Am Stat Assoc. 2012;89:268-77.
    • (2012) J Am Stat Assoc , vol.89 , pp. 268-277
    • Escobar, M.D.1
  • 75
    • 0037102914 scopus 로고    scopus 로고
    • Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects
    • 12210632
    • Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002;21:2175-97.
    • (2002) Stat Med , vol.21 , pp. 2175-2197
    • Royston, P.1    Parmar, M.K.B.2
  • 76
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Competing risks and multi-state models
    • 1:STN:280:DC%2BD2s3hs1agsA%3D%3D 17031868
    • Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26:2389-430.
    • (2007) Stat Med , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.B.3
  • 77
    • 80052418167 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
    • Sweeting MJ, Thompson SG. Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture. Biometrical J. 2011;53:750-63.
    • (2011) Biometrical J , vol.53 , pp. 750-763
    • Sweeting, M.J.1    Thompson, S.G.2
  • 78
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
    • 1:STN:280:DyaK2s%2FhtFyjsw%3D%3D 8858789
    • Faucett CL, Thomas DC. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996;15:1663-85.
    • (1996) Stat Med , vol.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 80
    • 33845482505 scopus 로고    scopus 로고
    • Joint modeling of survival and longitudinal data: Likelihood approach revisited
    • 17156277
    • Hsieh F, Tseng YK, Wang JL. Joint modeling of survival and longitudinal data: Likelihood approach revisited. Biometrics. 2006;62:1037-43.
    • (2006) Biometrics , vol.62 , pp. 1037-1043
    • Hsieh, F.1    Tseng, Y.K.2    Wang, J.L.3
  • 81
    • 70449411807 scopus 로고    scopus 로고
    • The BUGS project: Evolution, critique and future directions
    • 19630097
    • Lunn D, Spiegelhalter DJ, Thomas A, Best N. The BUGS project: evolution, critique and future directions. Stat Med. 2009;28:3049-67.
    • (2009) Stat Med , vol.28 , pp. 3049-3067
    • Lunn, D.1    Spiegelhalter, D.J.2    Thomas, A.3    Best, N.4
  • 82
    • 62749191476 scopus 로고    scopus 로고
    • A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness
    • 18373713
    • Tsonaka R, Verbeke G, Lesaffre E. A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness. Biometrics. 2009;65:81-7.
    • (2009) Biometrics , vol.65 , pp. 81-87
    • Tsonaka, R.1    Verbeke, G.2    Lesaffre, E.3
  • 84
    • 33745246056 scopus 로고    scopus 로고
    • Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles
    • 16918906
    • Fieuws S, Verbeke G. Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics. 2006;62:424-31.
    • (2006) Biometrics , vol.62 , pp. 424-431
    • Fieuws, S.1    Verbeke, G.2
  • 85
    • 67650521193 scopus 로고    scopus 로고
    • JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
    • Hornik K, Leisch F, Zeileis A, editors Vienna, Austria
    • Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A, editors. Proc. 3rd Int. Work. Distrib. Stat. Comput. Vienna, Austria; 2003.
    • (2003) Proc. 3rd Int. Work. Distrib. Stat. Comput.
    • Plummer, M.1
  • 87
    • 84985993885 scopus 로고    scopus 로고
    • The stjm package in Stata: Joint modeling of longitudinal and survival data
    • Seattle
    • Crowther MJ. The stjm package in Stata: Joint modeling of longitudinal and survival data. Jt. Stat. Meet. Seattle; 2015.
    • (2015) Jt. Stat. Meet.
    • Crowther, M.J.1
  • 88
    • 84864682470 scopus 로고    scopus 로고
    • Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial
    • 1:CAS:528:DC%2BC38XhslWjtrzJ
    • Wang P, Shen W, Boye ME. Joint modeling of longitudinal outcomes and survival using latent growth modeling approach in a mesothelioma trial. Heal Serv Outcomes Res Methodol. 2012;12:182-99.
    • (2012) Heal Serv Outcomes Res Methodol , vol.12 , pp. 182-199
    • Wang, P.1    Shen, W.2    Boye, M.E.3
  • 89
    • 79960208982 scopus 로고    scopus 로고
    • Sample size and power determination in joint modeling of longitudinal and survival data
    • 21590793 3278672
    • Chen LM, Ibrahim JG, Chu H. Sample size and power determination in joint modeling of longitudinal and survival data. Stat Med. 2011;30:2295-309.
    • (2011) Stat Med , vol.30 , pp. 2295-2309
    • Chen, L.M.1    Ibrahim, J.G.2    Chu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.