메뉴 건너뛰기




Volumn 31, Issue 16, 2012, Pages 1707-1721

Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects

Author keywords

Bivariate ordinal data; Competing risks; Joint model; Missing data; Nonparametric distribution

Indexed keywords

CYCLOPHOSPHAMIDE; PLACEBO;

EID: 84862853440     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4507     Document Type: Article
Times cited : (33)

References (25)
  • 3
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan JW, Laird NM. Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 1997; 16:259-272.
    • (1997) Statistics in Medicine , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 4
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: an overview
    • Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 5
    • 48049105068 scopus 로고    scopus 로고
    • Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture
    • Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Statistics in Medicine 2008; 27:2981-2998.
    • (2008) Statistics in Medicine , vol.27 , pp. 2981-2998
    • Diggle, P.J.1    Sousa, I.2    Chetwynd, A.G.3
  • 6
    • 60749123292 scopus 로고    scopus 로고
    • Missing data methods in longitudinal studies: a review
    • Ibrahim JG, Molenberghs G. Missing data methods in longitudinal studies: a review. Test 2009; 18:1-43.
    • (2009) Test , vol.18 , pp. 1-43
    • Ibrahim, J.G.1    Molenberghs, G.2
  • 8
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach
    • Proust-Lima C, Joly P, Dartigues J, Jacqmin-Gadda H. Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach. Computational Statistics and Data Analysis 2009; 53:1142-1154.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Dartigues, J.3    Jacqmin-Gadda, H.4
  • 9
    • 0037199763 scopus 로고    scopus 로고
    • Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables
    • Lin H, McCulloch CE, Mayne ST. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Statistics in Medicine 2002; 21:2369-2382.
    • (2002) Statistics in Medicine , vol.21 , pp. 2369-2382
    • Lin, H.1    McCulloch, C.E.2    Mayne, S.T.3
  • 10
    • 14544307431 scopus 로고    scopus 로고
    • Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs
    • Pantazis N, Touloumi G. Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs. Applied Statistics 2005; 54:405-423.
    • (2005) Applied Statistics , vol.54 , pp. 405-423
    • Pantazis, N.1    Touloumi, G.2
  • 11
    • 11344266599 scopus 로고    scopus 로고
    • Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection
    • The CASCADE Collaboration
    • Thiebaut R, Jacqmin-Gadda H, Babiker A, Commenges D, The CASCADE Collaboration. Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection. Statistics in Medicine 2005; 24:65-82.
    • (2005) Statistics in Medicine , vol.24 , pp. 65-82
    • Thiebaut, R.1    Jacqmin-Gadda, H.2    Babiker, A.3    Commenges, D.4
  • 12
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi Y, Ibrahim JG. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62:432-445.
    • (2006) Biometrics , vol.62 , pp. 432-445
    • Chi, Y.1    Ibrahim, J.G.2
  • 13
    • 84862864996 scopus 로고    scopus 로고
    • An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data
    • Albert PS, Shih JH. An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data. The Annals of Applied Statistics 2010; 4:1517-1532.
    • (2010) The Annals of Applied Statistics , vol.4 , pp. 1517-1532
    • Albert, P.S.1    Shih, J.H.2
  • 14
    • 38849201041 scopus 로고    scopus 로고
    • Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: a simulation study
    • Pantazis N, Touloumi G. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: a simulation study. Statistics in Medicine 2007; 26:5473-5485.
    • (2007) Statistics in Medicine , vol.26 , pp. 5473-5485
    • Pantazis, N.1    Touloumi, G.2
  • 15
    • 62749191476 scopus 로고    scopus 로고
    • A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness
    • Tsonaka R, Verbeke G, Lesaffre E. A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness. Biometrics 2009; 65:81-87.
    • (2009) Biometrics , vol.65 , pp. 81-87
    • Tsonaka, R.1    Verbeke, G.2    Lesaffre, E.3
  • 16
    • 76749116117 scopus 로고    scopus 로고
    • Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial
    • Li N, Elashoff R, Li G, Saver J. Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial. Statistics in Medicine 2010; 29:546-557.
    • (2010) Statistics in Medicine , vol.29 , pp. 546-557
    • Li, N.1    Elashoff, R.2    Li, G.3    Saver, J.4
  • 17
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follmann D, Wu M. An approximate generalized linear model with random effects for informative missing data. Biometrics 1995; 51:151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 18
    • 17444429292 scopus 로고    scopus 로고
    • Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures
    • Zeng D, Cai J. Simultaneous modelling of survival and longitudinal data with an application to repeated quality of life measures. Lifetime Data Analysis 2005; 11:151-174.
    • (2005) Lifetime Data Analysis , vol.11 , pp. 151-174
    • Zeng, D.1    Cai, J.2
  • 20
    • 0000525359 scopus 로고
    • The geometry of mixture likelihoods: a general theory
    • Lindsay BG. The geometry of mixture likelihoods: a general theory. The Annals of Statistics 1983; 11:86-94.
    • (1983) The Annals of Statistics , vol.11 , pp. 86-94
    • Lindsay, B.G.1
  • 23
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff RM, Li G, Li N. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64:762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 24
    • 77956829028 scopus 로고    scopus 로고
    • Nonignorable models for intermittently missing categorical longitudinal responses
    • Tsonaka R, Rizopoulos D, Verbeke G, Lesaffre E. Nonignorable models for intermittently missing categorical longitudinal responses. Biometrics 2010; 66:834-844.
    • (2010) Biometrics , vol.66 , pp. 834-844
    • Tsonaka, R.1    Rizopoulos, D.2    Verbeke, G.3    Lesaffre, E.4
  • 25
    • 0347363890 scopus 로고    scopus 로고
    • Diagnostics for joint longitudinal and dropout time modeling
    • Dobson A, Henderson R. Diagnostics for joint longitudinal and dropout time modeling. Biometrics 2003; 59:741-751.
    • (2003) Biometrics , vol.59 , pp. 741-751
    • Dobson, A.1    Henderson, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.