-
1
-
-
84985013144
-
Deep compositional question answering with neural module networks
-
J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Deep compositional question answering with neural module networks. CVPR, 2016.
-
(2016)
CVPR
-
-
Andreas, J.1
Rohrbach, M.2
Darrell, T.3
Klein, D.4
-
3
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. TPAMI, 35, 2013.
-
(2013)
TPAMI
, vol.35
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
4
-
-
84911369987
-
Data fusion through cross-modality metric learning using similarity-sensitive hashing
-
M. Bronstein, A. Bronstein, F. Michel, and N. Paragios. Data fusion through cross-modality metric learning using similarity-sensitive hashing. In CVPR. IEEE, 2010.
-
(2010)
CVPR. IEEE
-
-
Bronstein, M.1
Bronstein, A.2
Michel, F.3
Paragios, N.4
-
5
-
-
84984958156
-
Deep quantization network for Effcient image retrieval
-
Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen. Deep quantization network for Effcient image retrieval. In AAAI, 2016.
-
(2016)
AAAI
-
-
Cao, Y.1
Long, M.2
Wang, J.3
Zhu, H.4
Wen, Q.5
-
6
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.
-
(2015)
CVPR
-
-
Donahue, J.1
Hendricks, L.A.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
7
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Homan, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Homan, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
84949801196
-
Cross-modal retrieval with correspondence autoencoder
-
F. Feng, X. Wang, and R. Li. Cross-modal retrieval with correspondence autoencoder. In MM. ACM, 2014.
-
(2014)
MM. ACM
-
-
Feng, F.1
Wang, X.2
Li, R.3
-
9
-
-
84898958665
-
Devise: A deep visual-semantic embedding model
-
A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep visual-semantic embedding model. In NIPS, pages 2121-2129, 2013.
-
(2013)
NIPS
, pp. 2121-2129
-
-
Frome, A.1
Corrado, G.S.2
Shlens, J.3
Bengio, S.4
Dean, J.5
Mikolov, T.6
-
10
-
-
84965148420
-
Are you talking to a machine? Dataset and methods for multilingual image question answering
-
H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu. Are you talking to a machine? dataset and methods for multilingual image question answering. In NIPS, 2015.
-
(2015)
NIPS
-
-
Gao, H.1
Mao, J.2
Zhou, J.3
Huang, Z.4
Wang, L.5
Xu, W.6
-
11
-
-
84919832465
-
Towards end-to-end speech recognition with recurrent neural networks
-
A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In ICML, pages 1764-1772, 2014.
-
(2014)
ICML
, pp. 1764-1772
-
-
Graves, A.1
Jaitly, N.2
-
12
-
-
84859477054
-
A kernel two-sample test
-
Mar
-
A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, and A. Smola. A kernel two-sample test. JMLR, 13:723-773, Mar. 2012.
-
(2012)
JMLR
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.2
Rasch, M.3
Scholkopf, B.4
Smola, A.5
-
13
-
-
38049183286
-
The iapr tc-12 benchmark: A new evaluation resource for visual information systems
-
M. Grubinger, P. Clough, H. Muller, and T. Deselaers. The iapr tc-12 benchmark: A new evaluation resource for visual information systems. In International Workshop OntoImage, pages 13-23, 2006.
-
(2006)
International Workshop OntoImage
, pp. 13-23
-
-
Grubinger, M.1
Clough, P.2
Muller, H.3
Deselaers, T.4
-
15
-
-
84986305787
-
Natural language object retrieval
-
R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Darrell. Natural language object retrieval. CVPR, 2016.
-
(2016)
CVPR
-
-
Hu, R.1
Xu, H.2
Rohrbach, M.3
Feng, J.4
Saenko, K.5
Darrell, T.6
-
16
-
-
84980342097
-
Iterative multi-view hashing for cross media indexing
-
Y. Hu, Z. Jin, H. Ren, D. Cai, and X. He. Iterative multi-view hashing for cross media indexing. In MM. ACM, 2014.
-
(2014)
MM. ACM
-
-
Hu, Y.1
Jin, Z.2
Ren, H.3
Cai, D.4
He, X.5
-
17
-
-
85009867858
-
Cae: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Cae: Convolutional architecture for fast feature embedding. In MM. ACM, 2014.
-
(2014)
MM. ACM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
18
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, pages 3128-3137, 2015.
-
(2015)
CVPR
, pp. 3128-3137
-
-
Karpathy, A.1
Fei-Fei, L.2
-
19
-
-
84929363334
-
Multimodal neural language models
-
T. Jebara and E. P. Xing, editors. JMLR Workshop and Conference Proceedings
-
R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In T. Jebara and E. P. Xing, editors, ICML, pages 595-603. JMLR Workshop and Conference Proceedings, 2014.
-
(2014)
ICML
, pp. 595-603
-
-
Kiros, R.1
Salakhutdinov, R.2
Zemel, R.3
-
20
-
-
84944113729
-
Unifying visual-semantic embeddings with multimodal neural language models
-
R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with multimodal neural language models. In NIPS, 2014.
-
(2014)
NIPS
-
-
Kiros, R.1
Salakhutdinov, R.2
Zemel, R.S.3
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
84866034209
-
Learning hash functions for cross-view similarity search
-
S. Kumar and R. Udupa. Learning hash functions for cross-view similarity search. In IJCAI, 2011.
-
(2011)
IJCAI
-
-
Kumar, S.1
Udupa, R.2
-
23
-
-
84985012525
-
Simultaneous feature learning and hash coding with deep neural networks
-
H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and hash coding with deep neural networks. In CVPR. IEEE, 2015.
-
(2015)
CVPR. IEEE
-
-
Lai, H.1
Pan, Y.2
Liu, Y.3
Yan, S.4
-
24
-
-
84906505935
-
-
CoRR, abs/1405. 0312
-
T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405. 0312, 2014.
-
(2014)
Microsoft COCO: Common Objects in Context
-
-
Lin, T.1
Maire, M.2
Belongie, S.J.3
Bourdev, L.D.4
Girshick, R.B.5
Hays, J.6
Perona, P.7
Ramanan, D.8
Dollár, P.9
Zitnick, C.L.10
-
25
-
-
84959209380
-
Semantics-preserving hashing for cross-view retrieval
-
Z. Lin, G. Ding, M. Hu, and J. Wang. Semantics-preserving hashing for cross-view retrieval. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lin, Z.1
Ding, G.2
Hu, M.3
Wang, J.4
-
26
-
-
84911378596
-
Supervised hashing with kernels
-
W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernels. In CVPR. IEEE, 2012.
-
(2012)
CVPR. IEEE
-
-
Liu, W.1
Wang, J.2
Ji, R.3
Jiang, Y.-G.4
Chang, S.-F.5
-
28
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In ICML, 2015.
-
(2015)
ICML
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.I.4
-
29
-
-
84980332172
-
Composite correlation quantization for Effcient multimodal search
-
M. Long, Y. Cao, J. Wang, and P. S. Yu. Composite correlation quantization for Effcient multimodal search. SIGIR, 2016.
-
(2016)
SIGIR
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Yu, P.S.4
-
30
-
-
84897493967
-
Multimodal similarity-preserving hashing
-
J. Masci, M. M. Bronstein, A. M. Bronstein, and J. Schmidhuber. Multimodal similarity-preserving hashing. TPAMI, 36, 2014.
-
(2014)
TPAMI
, vol.36
-
-
Masci, J.1
Bronstein, M.M.2
Bronstein, A.M.3
Schmidhuber, J.4
-
31
-
-
84999832326
-
Comparing apples to oranges: A scalable solution with heterogeneous hashing
-
ACM
-
M. Ou, P. Cui, F. Wang, J. Wang, W. Zhu, and S. Yang. Comparing apples to oranges: A scalable solution with heterogeneous hashing. In KDD, pages 230-238. ACM, 2013.
-
(2013)
KDD
, pp. 230-238
-
-
Ou, M.1
Cui, P.2
Wang, F.3
Wang, J.4
Zhu, W.5
Yang, S.6
-
32
-
-
0034498523
-
Content-based image retrieval at the end of the early years
-
A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. TPAMI, 22, 2000.
-
(2000)
TPAMI
, vol.22
-
-
Smeulders, A.W.1
Worring, M.2
Santini, S.3
Gupta, A.4
Jain, R.5
-
33
-
-
84980323542
-
Inter-media hashing for large-scale retrieval from heterogeneous data sources
-
J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen. Inter-media hashing for large-scale retrieval from heterogeneous data sources. In SIGMOD. ACM, 2013.
-
(2013)
SIGMOD. ACM
-
-
Song, J.1
Yang, Y.2
Yang, Y.3
Huang, Z.4
Shen, H.T.5
-
34
-
-
84916911784
-
Multimodal learning with deep boltzmann machines
-
N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. JMLR, 15, 2014.
-
(2014)
JMLR
, vol.15
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
35
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
-
(2014)
NIPS
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
37
-
-
84980342135
-
Effective multi-modal retrieval based on stacked auto-encoders
-
W. Wang, B. C. Ooi, X. Yang, D. Zhang, and Y. Zhuang. effective multi-modal retrieval based on stacked auto-encoders. In VLDB. ACM, 2014.
-
(2014)
VLDB. ACM
-
-
Wang, W.1
Ooi, B.C.2
Yang, X.3
Zhang, D.4
Zhuang, Y.5
-
38
-
-
84907021882
-
Scalable heterogeneous translated hashing
-
ACM
-
Y. Wei, Y. Song, Y. Zhen, B. Liu, and Q. Yang. Scalable heterogeneous translated hashing. In KDD, pages 791-800. ACM, 2014.
-
(2014)
KDD
, pp. 791-800
-
-
Wei, Y.1
Song, Y.2
Zhen, Y.3
Liu, B.4
Yang, Q.5
-
39
-
-
84949772223
-
Quantized correlation hashing for fast cross-modal search
-
B. Wu, Q. Yang, W. Zheng, Y. Wang, and J. Wang. Quantized correlation hashing for fast cross-modal search. In IJCAI, 2015.
-
(2015)
IJCAI
-
-
Wu, B.1
Yang, Q.2
Zheng, W.3
Wang, Y.4
Wang, J.5
-
40
-
-
84949870277
-
Supervised hashing for image retrieval via image representation learning
-
R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for image retrieval via image representation learning. In AAAI. AAAI, 2014.
-
(2014)
AAAI. AAAI
-
-
Xia, R.1
Pan, Y.2
Lai, H.3
Liu, C.4
Yan, S.5
-
41
-
-
84904546082
-
Discriminative coupled dictionary hashing for fast cross-media retrieval
-
Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang. Discriminative coupled dictionary hashing for fast cross-media retrieval. In SIGIR. ACM, 2014.
-
(2014)
SIGIR. ACM
-
-
Yu, Z.1
Wu, F.2
Yang, Y.3
Tian, Q.4
Luo, J.5
Zhuang, Y.6
-
43
-
-
84949831261
-
Large-scale supervised multimodal hashing with semantic correlation maximization
-
D. Zhang and W. Li. Large-scale supervised multimodal hashing with semantic correlation maximization. In AAAI, 2014.
-
(2014)
AAAI
-
-
Zhang, D.1
Li, W.2
-
44
-
-
84877748479
-
Co-regularized hashing for multimodal data
-
Y. Zhen and D.-Y. Yeung. Co-regularized hashing for multimodal data. In NIPS, 2012.
-
(2012)
NIPS
-
-
Zhen, Y.1
Yeung, D.-Y.2
-
45
-
-
84980348475
-
A probabilistic model for multimodal hash function learning
-
Y. Zhen and D.-Y. Yeung. A probabilistic model for multimodal hash function learning. In SIGKDD. ACM, 2012.
-
(2012)
SIGKDD. ACM
-
-
Zhen, Y.1
Yeung, D.-Y.2
-
46
-
-
84984957689
-
Deep hashing network for Effcient similarity retrieval
-
H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing network for Effcient similarity retrieval. In AAAI, 2016.
-
(2016)
AAAI
-
-
Zhu, H.1
Long, M.2
Wang, J.3
Cao, Y.4
|