메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1-18

An efficient explanation of individual classifications using game theory

Author keywords

Classification; Data postprocessing; Explanation; Visualization

Indexed keywords

CLASSIFICATION; CLASSIFICATION MODELS; COALITIONAL GAME THEORY; EXPONENTIAL TIME COMPLEXITY; FUNDAMENTAL CONCEPTS; GENERAL METHOD; INDIVIDUAL PREDICTION; MACHINE LEARNING ALGORITHMS; REAL WORLD DATA; SAMPLING-BASED;

EID: 76749170318     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (668)

References (23)
  • 1
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8:373-389, 1995.
    • (1995) Knowledge-Based Systems , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 5
    • 55749090251 scopus 로고    scopus 로고
    • Polynomial calculation of the shapley value based on sampling
    • in print, doi: 10.1016/j.cor.2008.04.004
    • Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value based on sampling. Computers and Operations Research, 2008. (in print, doi: 10.1016/j.cor.2008.04.004).
    • (2008) Computers and Operations Research
    • Castro, J.1    Gómez, D.2    Tejada, J.3
  • 6
    • 34447274515 scopus 로고    scopus 로고
    • Feature selection via coalitional game theory
    • Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coalitional game theory. Neural Computation, 19(7):1939-1961, 2007.
    • (2007) Neural Computation , vol.19 , Issue.7 , pp. 1939-1961
    • Cohen, S.1    Dror, G.2    Ruppin, E.3
  • 9
    • 3142713692 scopus 로고    scopus 로고
    • Fair attribution of functional contribution in artificial and biological networks
    • Alon Keinan, Ben Sandbank, Claus C. Hilgetag, IsaacMeilijson, and Eytan Ruppin. Fair attribution of functional contribution in artificial and biological networks. Neural Computation, 16(9):1887- 1915, 2004.
    • (2004) Neural Computation , vol.16 , Issue.9 , pp. 1887-1915
    • Keinan, A.1    Sandbank, B.2    Hilgetag, C.C.3    Meilijson, I.4    Ruppin, E.5
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence journal, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence Journal , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 11
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine, 23:89-109, 2001.
    • (2001) Artificial Intelligence in Medicine , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 14
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • DavidMartens, Bart Baesens, Tony Van Gestel, and Jan Vanthienen. Comprehensible credit scoring models using rule extraction from support vector machines. European Journal of Operational Research, 183(3):1466-1476, 2007.
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Van Gestel, T.3    Vanthienen, J.4
  • 15
    • 44649110114 scopus 로고    scopus 로고
    • Transversality of the shapley value
    • Stefano Moretti and Fioravante Patrone. Transversality of the shapley value. TOP, 16(1):1-41, 2008.
    • (2008) TOP , vol.16 , Issue.1 , pp. 1-41
    • Moretti, S.1    Patrone, F.2
  • 17
    • 67349104672 scopus 로고    scopus 로고
    • Generating rules with predicates, terms and variables from the pruned neural networks
    • Richi Nayak. Generating rules with predicates, terms and variables from the pruned neural networks. Neural Networks, 22(4):405-414, 2009.
    • (2009) Neural Networks , vol.22 , Issue.4 , pp. 405-414
    • Nayak, R.1
  • 22
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks, machine learning
    • Geoffrey Towell and Jude W. Shavlik. Extracting refined rules from knowledge-based neural networks, machine learning. Machine Learning, 13:71-101, 1993.
    • (1993) Machine Learning , vol.13 , pp. 71-101
    • Towell, G.1    Shavlik, J.W.2
  • 23
    • 69249209926 scopus 로고    scopus 로고
    • Explaining instance classifications with interactions of subsets of feature values
    • Erik Štrumbelj, Igor Kononenko, and Marko Robnik Šikonja. Explaining instance classifications with interactions of subsets of feature values. Data & Knowledge Engineering, 68(10):886-904, 2009.
    • (2009) Data & Knowledge Engineering , vol.68 , Issue.10 , pp. 886-904
    • Štrumbelj, E.1    Kononenko, I.2    Šikonja, M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.