메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

A Bregman-proximal point algorithm for robust non-negative matrix factorization with possible missing values and outliers - application to gene expression analysis

Author keywords

Feature extraction; Gene expression analysis; Non negative matrix factorization; Outliers and missing data

Indexed keywords

ALGORITHMS; CONSTRAINED OPTIMIZATION; DATA MINING; DEGREES OF FREEDOM (MECHANICS); EXTRACTION; FACTORIZATION; FEATURE EXTRACTION; GENE EXPRESSION; GENES; LAGRANGE MULTIPLIERS; OPTIMIZATION; STATISTICS;

EID: 84984675526     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1120-8     Document Type: Article
Times cited : (10)

References (20)
  • 2
    • 31044445386 scopus 로고    scopus 로고
    • Email surveillance using non-negative matrix factorization
    • Berry MW, Browne M. Email surveillance using non-negative matrix factorization. Comput Math Organ Theory. 2005; 11(3):249-64.
    • (2005) Comput Math Organ Theory , vol.11 , Issue.3 , pp. 249-264
    • Berry, M.W.1    Browne, M.2
  • 3
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jia S, Qian Y. Constrained nonnegative matrix factorization for hyperspectral unmixing. Geosci Remote Sens IEEE Trans. 2009; 47(1):161-73.
    • (2009) Geosci Remote Sens IEEE Trans , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 4
    • 23044534893 scopus 로고    scopus 로고
    • Non-negative matrix factorization for face recognition
    • Springer
    • Guillamet D, Vitria J. Non-negative matrix factorization for face recognition. In: Topics in Artificial Intelligence. Springer: 2002. p. 336-44.
    • (2002) Topics in Artificial Intelligence , pp. 336-344
    • Guillamet, D.1    Vitria, J.2
  • 5
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of non-negative sources
    • Chan TH, Ma WK, Chi CY, Wang Y. A convex analysis framework for blind separation of non-negative sources. Signal Process IEEE Trans. 2008; 56(10):5120-34.
    • (2008) Signal Process IEEE Trans , vol.56 , Issue.10 , pp. 5120-5134
    • Chan, T.H.1    Ma, W.K.2    Chi, C.Y.3    Wang, Y.4
  • 6
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics. 2007; 23(12):1495-502.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 7
    • 84873997087 scopus 로고    scopus 로고
    • Hierarchical non-negative matrix factorization (hnmf): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using mrsi
    • Li Y, Sima DM, Cauter SV, Sava C, Anca R, Himmelreich U, Pi Y, Van Huffel S. Hierarchical non-negative matrix factorization (hnmf): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using mrsi. NMR Biomed. 2013; 26(3):307-19.
    • (2013) NMR Biomed , vol.26 , Issue.3 , pp. 307-319
    • Li, Y.1    Sima, D.M.2    Cauter, S.V.3    Sava, C.4    Anca, R.5    Himmelreich, U.6    Pi, Y.7    Van Huffel, S.8
  • 8
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999; 401(6755):788-91.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 9
    • 84862519707 scopus 로고    scopus 로고
    • A convex model for nonnegative matrix factorization and dimensionality reduction on physical space
    • Esser E, Möller M, Osher S, Sapiro G, Xin J. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. Image Process IEEE Trans. 2012; 21(7):3239-52.
    • (2012) Image Process IEEE Trans , vol.21 , Issue.7 , pp. 3239-3252
    • Esser, E.1    Möller, M.2    Osher, S.3    Sapiro, G.4    Xin, J.5
  • 14
    • 84983143287 scopus 로고    scopus 로고
    • Convex optimization: Algorithms and complexity
    • Bubeck S. Convex optimization: Algorithms and complexity. Foundations and Trends®; in Machine Learning. 2015; 8(3-4):231-357.
    • (2015) Foundations and Trends®; in Machine Learning , vol.8 , Issue.3-4 , pp. 231-357
    • Bubeck, S.1
  • 15


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.