메뉴 건너뛰기




Volumn 11, Issue 5, 2016, Pages 920-936

3D printing of versatile reactionware for chemical synthesis

Author keywords

[No Author keywords available]

Indexed keywords

POLYPROPYLENE; SILICONE;

EID: 84983565529     PISSN: 17542189     EISSN: 17502799     Source Type: Journal    
DOI: 10.1038/nprot.2016.041     Document Type: Article
Times cited : (186)

References (59)
  • 1
    • 33745077052 scopus 로고    scopus 로고
    • Advances in three dimensional printing-state of the art and future perspectives
    • Dimitrov, D., Schreve, K. & de Beer, N. Advances in three dimensional printing-state of the art and future perspectives. Rapid Prototyping J. 12, 136-147 (2006).
    • (2006) Rapid Prototyping J. , vol.12 , pp. 136-147
    • Dimitrov, D.1    Schreve, K.2    De Beer, N.3
  • 3
    • 77955980550 scopus 로고    scopus 로고
    • 3D printing based on imaging data: Review of medical applications
    • Rengier, F. et al. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5, 335-341 (2010).
    • (2010) Int. J. Comput. Assist. Radiol. Surg. , vol.5 , pp. 335-341
    • Rengier, F.1
  • 4
    • 84901049672 scopus 로고    scopus 로고
    • 3D-printed biopolymers for tissue engineering application
    • Li, X.M. et al. 3D-printed biopolymers for tissue engineering application. Int. J. Polym. Sci. 2014, 1-13 (2014).
    • (2014) Int. J. Polym. Sci. , vol.2014 , pp. 1-13
    • Li, X.M.1
  • 6
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518-524 (2005).
    • (2005) Nat. Mater. , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 7
    • 67649354904 scopus 로고    scopus 로고
    • Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
    • Barry, R.A. et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21, 2407-2410 (2009).
    • (2009) Adv. Mater. , vol.21 , pp. 2407-2410
    • Barry, R.A.1
  • 8
    • 84937020271 scopus 로고    scopus 로고
    • 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
    • Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035-4040 (2015).
    • (2015) Adv. Mater. , vol.27 , pp. 4035-4040
    • Hong, S.1
  • 9
    • 78650301445 scopus 로고    scopus 로고
    • Biomatrices and biomaterials for future developments of bioprinting and biofabrication
    • Nakamura, M. et al. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2, 014110 (2010).
    • (2010) Biofabrication , vol.2 , pp. 014110
    • Nakamura, M.1
  • 10
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland, T., Xu, T., Damon, B. & Cui, X. Application of inkjet printing to tissue engineering. Biotechnol. J. 1, 910-917 (2006).
    • (2006) Biotechnol. J. , vol.1 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3    Cui, X.4
  • 11
    • 84874729159 scopus 로고    scopus 로고
    • Scaffolds for tissue engineering produced by inkjet printing
    • Zhang, Y., Tse, C., Rouholamin, D. & Smith, P. Scaffolds for tissue engineering produced by inkjet printing. Cent. Eur. J. Eng. 2, 325-335 (2012).
    • (2012) Cent. Eur. J. Eng. , vol.2 , pp. 325-335
    • Zhang, Y.1    Tse, C.2    Rouholamin, D.3    Smith, P.4
  • 12
    • 84934968095 scopus 로고    scopus 로고
    • Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds
    • Mohanty, S. et al. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater. Sci. Eng. C 55, 569-578 (2015).
    • (2015) Mater. Sci. Eng. C , vol.55 , pp. 569-578
    • Mohanty, S.1
  • 13
    • 84900988712 scopus 로고    scopus 로고
    • 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • Kolesky, D.B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124-3130 (2014).
    • (2014) Adv. Mater. , vol.26 , pp. 3124-3130
    • Kolesky, D.B.1
  • 14
    • 84933049575 scopus 로고    scopus 로고
    • Current progress in 3D printing for cardiovascular tissue engineering
    • Mosadegh, B., Xiong, G., Dunham, S. & Min, J.K. Current progress in 3D printing for cardiovascular tissue engineering. Biomed. Mater. 10, 034002 (2015).
    • (2015) Biomed. Mater. , vol.10 , pp. 034002
    • Mosadegh, B.1    Xiong, G.2    Dunham, S.3    Min, J.K.4
  • 15
    • 37349085843 scopus 로고    scopus 로고
    • Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants
    • Habibovic, P. et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29, 944-953 (2008).
    • (2008) Biomaterials , vol.29 , pp. 944-953
    • Habibovic, P.1
  • 16
    • 78349308385 scopus 로고    scopus 로고
    • Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing
    • Klammert, U. et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947-2953 (2010).
    • (2010) J. Mater. Sci. Mater. Med. , vol.21 , pp. 2947-2953
    • Klammert, U.1
  • 18
    • 84897557208 scopus 로고    scopus 로고
    • Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
    • Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C. & Spence, D.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240-3253 (2014).
    • (2014) Anal. Chem. , vol.86 , pp. 3240-3253
    • Gross, B.C.1    Erkal, J.L.2    Lockwood, S.Y.3    Chen, C.4    Spence, D.M.5
  • 19
    • 84860255597 scopus 로고    scopus 로고
    • Integrated 3D-printed reactionware for chemical synthesis and analysis
    • Symes, M.D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem 4, 349-354 (2012).
    • (2012) Nat. Chem , vol.4 , pp. 349-354
    • Symes, M.D.1
  • 20
    • 84880003672 scopus 로고    scopus 로고
    • Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification
    • Kitson, P.J., Symes, M.D., Dragone, V. & Cronin, L. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099-3103 (2013).
    • (2013) Chem. Sci. , vol.4 , pp. 3099-3103
    • Kitson, P.J.1    Symes, M.D.2    Dragone, V.3    Cronin, L.4
  • 21
    • 84928964264 scopus 로고    scopus 로고
    • Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications
    • Jakus, A.E. et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636-4648 (2015).
    • (2015) ACS Nano , vol.9 , pp. 4636-4648
    • Jakus, A.E.1
  • 22
    • 33751052745 scopus 로고    scopus 로고
    • Direct ink writing of 3D functional materials
    • Lewis, J.A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193-2204 (2006).
    • (2006) Adv. Funct. Mater. , vol.16 , pp. 2193-2204
    • Lewis, J.A.1
  • 23
    • 84916637214 scopus 로고    scopus 로고
    • 3D printed quantum dot light-emitting diodes
    • Kong, Y.L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017-7023 (2014).
    • (2014) Nano Lett , vol.14 , pp. 7017-7023
    • Kong, Y.L.1
  • 24
    • 85048558357 scopus 로고    scopus 로고
    • 3D printing of optical fibre
    • Austin-Morgan, T. 3D printing of optical fibre. New Electron. 48, 8 (2015).
    • (2015) New Electron. , vol.48 , pp. 8
    • Austin-Morgan, T.1
  • 25
    • 0032188397 scopus 로고    scopus 로고
    • A comparison of rapid prototyping technologies
    • Pham, D.T. & Gault, R.S. A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38, 1257-1287 (1998).
    • (1998) Int. J. Mach. Tools Manuf. , vol.38 , pp. 1257-1287
    • Pham, D.T.1    Gault, R.S.2
  • 26
    • 84885099350 scopus 로고    scopus 로고
    • I3DP, a robust 3D printing approach enabling genetic post-printing surface modification
    • Wang, X. et al. i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chem. Commun. 49, 10064-10066 (2013).
    • (2013) Chem. Commun. , vol.49 , pp. 10064-10066
    • Wang, X.1
  • 27
    • 84937468305 scopus 로고    scopus 로고
    • Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery
    • Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031-5039 (2015).
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 5031-5039
    • Xing, J.-F.1    Zheng, M.-L.2    Duan, X.-M.3
  • 28
    • 84925264033 scopus 로고    scopus 로고
    • Continuous liquid interface production of 3D objects
    • Tumbleston, J.R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349-1352 (2015).
    • (2015) Science , vol.347 , pp. 1349-1352
    • Tumbleston, J.R.1
  • 29
    • 70349996385 scopus 로고    scopus 로고
    • Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices
    • Park, S.H., Yang, D.Y. & Lee, K.S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3, 1-11 (2009).
    • (2009) Laser Photon. Rev. , vol.3 , pp. 1-11
    • Park, S.H.1    Yang, D.Y.2    Lee, K.S.3
  • 30
    • 85017469385 scopus 로고    scopus 로고
    • Inkjet-based micromanufacturing
    • (eds. Korvink, J.G., Smith, P.J. & Shin, D.-Y.) Wiley-VCH
    • Wallace, D. in Inkjet-based Micromanufacturing Vol. 9 Advanced Micro and Nanosystems (eds. Korvink, J.G., Smith, P.J. & Shin, D.-Y.) 1-14 (Wiley-VCH, 2012).
    • (2012) Advanced Micro and Nanosystems , vol.9 , pp. 1-14
    • Wallace, D.1
  • 31
    • 84937943461 scopus 로고    scopus 로고
    • A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing
    • Shirazi, S.F.S. et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 20 (2015).
    • (2015) Sci. Technol. Adv. Mater. , vol.16 , pp. 20
    • Shirazi, S.F.S.1
  • 32
    • 84926350562 scopus 로고    scopus 로고
    • 3D-printed alginate/phenamil composite scaffolds constituted with microsized core-shell struts for hard tissue regeneration
    • Lee, K. et al. 3D-printed alginate/phenamil composite scaffolds constituted with microsized core-shell struts for hard tissue regeneration. RSC Adv. 5, 29335-29345 (2015).
    • (2015) RSC Adv. , vol.5 , pp. 29335-29345
    • Lee, K.1
  • 34
    • 84970886216 scopus 로고    scopus 로고
    • Process technology 3D printing for drugs
    • Dorey, E. Process technology 3D printing for drugs. Chem. Ind. 78, 7 (2014).
    • (2014) Chem. Ind. , vol.78 , pp. 7
    • Dorey, E.1
  • 35
    • 84926460129 scopus 로고    scopus 로고
    • Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms
    • Icten, E., Giridhar, A., Taylor, L.S., Nagy, Z.K. & Reklaitis, G.V. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J. Pharm. Sci. 104, 1641-1649 (2015).
    • (2015) J. Pharm. Sci. , vol.104 , pp. 1641-1649
    • Icten, E.1    Giridhar, A.2    Taylor, L.S.3    Nagy, Z.K.4    Reklaitis, G.V.5
  • 36
    • 0345117988 scopus 로고    scopus 로고
    • Selective laser sintering: A qualitative and objective approach
    • Kumar, S. Selective laser sintering: a qualitative and objective approach. JOM J. Miner. Met. Mater. Soc. 55, 43-47 (2003).
    • (2003) JOM J. Miner. Met. Mater. Soc. , vol.55 , pp. 43-47
    • Kumar, S.1
  • 38
    • 0037414335 scopus 로고    scopus 로고
    • Sintering of commercially pure titanium powder with a Nd: YAG laser source
    • Fischer, P. et al. Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater. 51, 1651-1662 (2003).
    • (2003) Acta Mater. , vol.51 , pp. 1651-1662
    • Fischer, P.1
  • 40
    • 84888143945 scopus 로고    scopus 로고
    • Design and additive manufacture for flow chemistry
    • Capel, A.J. et al. Design and additive manufacture for flow chemistry. Lab Chip 13, 4583-4590 (2013).
    • (2013) Lab Chip , vol.13 , pp. 4583-4590
    • Capel, A.J.1
  • 41
    • 84924984183 scopus 로고    scopus 로고
    • 3D printed molds for non-planar PDMS microfluidic channels
    • Hwang, Y.H., Paydar, O.H. & Candler, R.N. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuat. A Phys. 226, 137-142 (2015).
    • (2015) Sens. Actuat. A Phys. , vol.226 , pp. 137-142
    • Hwang, Y.H.1    Paydar, O.H.2    Candler, R.N.3
  • 42
    • 84885163960 scopus 로고    scopus 로고
    • Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device
    • Mathieson, J.S., Rosnes, M.H., Sans, V., Kitson, P.J. & Cronin, L. Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285-291 (2013).
    • (2013) Beilstein J. Nanotechnol. , vol.4 , pp. 285-291
    • Mathieson, J.S.1    Rosnes, M.H.2    Sans, V.3    Kitson, P.J.4    Cronin, L.5
  • 44
    • 84865202010 scopus 로고    scopus 로고
    • Configurable 3D-printed millifluidic and microfluidic 'lab on a chip' reactionware devices
    • Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V. & Cronin, L. Configurable 3D-printed millifluidic and microfluidic 'lab on a chip' reactionware devices. Lab Chip 12, 3267-3271 (2012).
    • (2012) Lab Chip , vol.12 , pp. 3267-3271
    • Kitson, P.J.1    Rosnes, M.H.2    Sans, V.3    Dragone, V.4    Cronin, L.5
  • 45
    • 84928576320 scopus 로고    scopus 로고
    • Development of a 3D printer using scanning projection stereolithography
    • Lee, M.P. et al. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 5, 9875 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 9875
    • Lee, M.P.1
  • 46
    • 84876926333 scopus 로고    scopus 로고
    • 3D printing of multifunctional nanocomposites
    • Campbell, T.A. & Ivanova, O.S. 3D printing of multifunctional nanocomposites. Nano Today 8, 119-120 (2013).
    • (2013) Nano Today , vol.8 , pp. 119-120
    • Campbell, T.A.1    Ivanova, O.S.2
  • 47
    • 84926476189 scopus 로고    scopus 로고
    • 3D printing of a multifunctional nanocomposite helical liquid sensor
    • Guo, S.-Z., Yang, X., Heuzey, M.-C. & Therriault, D. 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7, 6451-6456 (2015).
    • (2015) Nanoscale , vol.7 , pp. 6451-6456
    • Guo, S.-Z.1    Yang, X.2    Heuzey, M.-C.3    Therriault, D.4
  • 48
    • 84920141731 scopus 로고    scopus 로고
    • 3D printing of reduced graphene oxide nanowires
    • Kim, J.H. et al. 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157-161 (2015).
    • (2015) Adv. Mater. , vol.27 , pp. 157-161
    • Kim, J.H.1
  • 50
    • 84935002900 scopus 로고    scopus 로고
    • Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling
    • Postiglione, G., Natale, G., Griffini, G., Levi, M. & Turri, S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos. A Appl. Sci. Manuf. 76, 110-114 (2015).
    • (2015) Compos. A Appl. Sci. Manuf. , vol.76 , pp. 110-114
    • Postiglione, G.1    Natale, G.2    Griffini, G.3    Levi, M.4    Turri, S.5
  • 51
    • 85027945882 scopus 로고    scopus 로고
    • Toward 3D printing of pure metals by laser-induced forward transfer
    • Visser, C.W. et al. Toward 3D printing of pure metals by laser-induced forward transfer. Adv. Mater. 27, 4087-4092 (2015).
    • (2015) Adv. Mater. , vol.27 , pp. 4087-4092
    • Visser, C.W.1
  • 52
    • 84936971391 scopus 로고    scopus 로고
    • 3D printable graphene composite
    • Wei, X. et al. 3D printable graphene composite. Sci. Rep. 5, 11181 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 11181
    • Wei, X.1
  • 53
    • 1142301873 scopus 로고    scopus 로고
    • Freeform fabrication of zinc-air batteries and electromechanical assemblies
    • Malone, E. et al. Freeform fabrication of zinc-air batteries and electromechanical assemblies. Rapid Prototyping J. 10, 58-69 (2004).
    • (2004) Rapid Prototyping J. , vol.10 , pp. 58-69
    • Malone, E.1
  • 54
    • 84925745528 scopus 로고    scopus 로고
    • Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
    • Ferrari, S. et al. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 286, 25-46 (2015).
    • (2015) J. Power Sources , vol.286 , pp. 25-46
    • Ferrari, S.1
  • 57
    • 34347256054 scopus 로고    scopus 로고
    • Annual review of biophysics and biomolecular structure
    • Annual Reviews
    • Melin, J. & Quake, S.R. in Annual Review of Biophysics and Biomolecular Structure. Vol. 36 Annual Review of Biophysics 213-231 (Annual Reviews, 2007).
    • (2007) Annual Review of Biophysics , vol.36 , pp. 213-231
    • Melin, J.1    Quake, S.R.2
  • 58
    • 84931288067 scopus 로고    scopus 로고
    • 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up
    • Kitson, P.J., Marshall, R.J., Long, D., Forgan, R.S. & Cronin, L. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723-12728 (2014).
    • (2014) Angew. Chem. Int. Ed. , vol.53 , pp. 12723-12728
    • Kitson, P.J.1    Marshall, R.J.2    Long, D.3    Forgan, R.S.4    Cronin, L.5
  • 59
    • 33746892256 scopus 로고    scopus 로고
    • MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units
    • Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223-10230 (2006).
    • (2006) J. Am. Chem. Soc. , vol.128 , pp. 10223-10230
    • Loiseau, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.