-
1
-
-
33745077052
-
Advances in three dimensional printing-state of the art and future perspectives
-
Dimitrov, D., Schreve, K. & de Beer, N. Advances in three dimensional printing-state of the art and future perspectives. Rapid Prototyping J. 12, 136-147 (2006).
-
(2006)
Rapid Prototyping J.
, vol.12
, pp. 136-147
-
-
Dimitrov, D.1
Schreve, K.2
De Beer, N.3
-
3
-
-
77955980550
-
3D printing based on imaging data: Review of medical applications
-
Rengier, F. et al. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5, 335-341 (2010).
-
(2010)
Int. J. Comput. Assist. Radiol. Surg.
, vol.5
, pp. 335-341
-
-
Rengier, F.1
-
4
-
-
84901049672
-
3D-printed biopolymers for tissue engineering application
-
Li, X.M. et al. 3D-printed biopolymers for tissue engineering application. Int. J. Polym. Sci. 2014, 1-13 (2014).
-
(2014)
Int. J. Polym. Sci.
, vol.2014
, pp. 1-13
-
-
Li, X.M.1
-
5
-
-
84896544149
-
Stereolithography in tissue engineering
-
Skoog, S.A., Goering, P.L. & Narayan, R.J. Stereolithography in tissue engineering. J. Mater. Sci. Mater. Med. 25, 845-856 (2014).
-
(2014)
J. Mater. Sci. Mater. Med.
, vol.25
, pp. 845-856
-
-
Skoog, S.A.1
Goering, P.L.2
Narayan, R.J.3
-
6
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
Hollister, S.J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518-524 (2005).
-
(2005)
Nat. Mater.
, vol.4
, pp. 518-524
-
-
Hollister, S.J.1
-
7
-
-
67649354904
-
Direct-write assembly of 3D hydrogel scaffolds for guided cell growth
-
Barry, R.A. et al. Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater. 21, 2407-2410 (2009).
-
(2009)
Adv. Mater.
, vol.21
, pp. 2407-2410
-
-
Barry, R.A.1
-
8
-
-
84937020271
-
3D printing of highly stretchable and tough hydrogels into complex, cellularized structures
-
Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035-4040 (2015).
-
(2015)
Adv. Mater.
, vol.27
, pp. 4035-4040
-
-
Hong, S.1
-
9
-
-
78650301445
-
Biomatrices and biomaterials for future developments of bioprinting and biofabrication
-
Nakamura, M. et al. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2, 014110 (2010).
-
(2010)
Biofabrication
, vol.2
, pp. 014110
-
-
Nakamura, M.1
-
10
-
-
33751182499
-
Application of inkjet printing to tissue engineering
-
Boland, T., Xu, T., Damon, B. & Cui, X. Application of inkjet printing to tissue engineering. Biotechnol. J. 1, 910-917 (2006).
-
(2006)
Biotechnol. J.
, vol.1
, pp. 910-917
-
-
Boland, T.1
Xu, T.2
Damon, B.3
Cui, X.4
-
11
-
-
84874729159
-
Scaffolds for tissue engineering produced by inkjet printing
-
Zhang, Y., Tse, C., Rouholamin, D. & Smith, P. Scaffolds for tissue engineering produced by inkjet printing. Cent. Eur. J. Eng. 2, 325-335 (2012).
-
(2012)
Cent. Eur. J. Eng.
, vol.2
, pp. 325-335
-
-
Zhang, Y.1
Tse, C.2
Rouholamin, D.3
Smith, P.4
-
12
-
-
84934968095
-
Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds
-
Mohanty, S. et al. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mater. Sci. Eng. C 55, 569-578 (2015).
-
(2015)
Mater. Sci. Eng. C
, vol.55
, pp. 569-578
-
-
Mohanty, S.1
-
13
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky, D.B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124-3130 (2014).
-
(2014)
Adv. Mater.
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
-
14
-
-
84933049575
-
Current progress in 3D printing for cardiovascular tissue engineering
-
Mosadegh, B., Xiong, G., Dunham, S. & Min, J.K. Current progress in 3D printing for cardiovascular tissue engineering. Biomed. Mater. 10, 034002 (2015).
-
(2015)
Biomed. Mater.
, vol.10
, pp. 034002
-
-
Mosadegh, B.1
Xiong, G.2
Dunham, S.3
Min, J.K.4
-
15
-
-
37349085843
-
Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants
-
Habibovic, P. et al. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29, 944-953 (2008).
-
(2008)
Biomaterials
, vol.29
, pp. 944-953
-
-
Habibovic, P.1
-
16
-
-
78349308385
-
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing
-
Klammert, U. et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J. Mater. Sci. Mater. Med. 21, 2947-2953 (2010).
-
(2010)
J. Mater. Sci. Mater. Med.
, vol.21
, pp. 2947-2953
-
-
Klammert, U.1
-
17
-
-
85027955443
-
Organic synthesis: March of the machines
-
Ley, S.V., Fitzpatrick, D.E., Ingham, R.J. & Myers, R.M. Organic synthesis: march of the machines. Angew. Chem. Int. Ed. 54, 3449-3464 (2015).
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 3449-3464
-
-
Ley, S.V.1
Fitzpatrick, D.E.2
Ingham, R.J.3
Myers, R.M.4
-
18
-
-
84897557208
-
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences
-
Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C. & Spence, D.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240-3253 (2014).
-
(2014)
Anal. Chem.
, vol.86
, pp. 3240-3253
-
-
Gross, B.C.1
Erkal, J.L.2
Lockwood, S.Y.3
Chen, C.4
Spence, D.M.5
-
19
-
-
84860255597
-
Integrated 3D-printed reactionware for chemical synthesis and analysis
-
Symes, M.D. et al. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem 4, 349-354 (2012).
-
(2012)
Nat. Chem
, vol.4
, pp. 349-354
-
-
Symes, M.D.1
-
20
-
-
84880003672
-
Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification
-
Kitson, P.J., Symes, M.D., Dragone, V. & Cronin, L. Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099-3103 (2013).
-
(2013)
Chem. Sci.
, vol.4
, pp. 3099-3103
-
-
Kitson, P.J.1
Symes, M.D.2
Dragone, V.3
Cronin, L.4
-
21
-
-
84928964264
-
Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications
-
Jakus, A.E. et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636-4648 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 4636-4648
-
-
Jakus, A.E.1
-
22
-
-
33751052745
-
Direct ink writing of 3D functional materials
-
Lewis, J.A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193-2204 (2006).
-
(2006)
Adv. Funct. Mater.
, vol.16
, pp. 2193-2204
-
-
Lewis, J.A.1
-
23
-
-
84916637214
-
3D printed quantum dot light-emitting diodes
-
Kong, Y.L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017-7023 (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 7017-7023
-
-
Kong, Y.L.1
-
24
-
-
85048558357
-
3D printing of optical fibre
-
Austin-Morgan, T. 3D printing of optical fibre. New Electron. 48, 8 (2015).
-
(2015)
New Electron.
, vol.48
, pp. 8
-
-
Austin-Morgan, T.1
-
25
-
-
0032188397
-
A comparison of rapid prototyping technologies
-
Pham, D.T. & Gault, R.S. A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38, 1257-1287 (1998).
-
(1998)
Int. J. Mach. Tools Manuf.
, vol.38
, pp. 1257-1287
-
-
Pham, D.T.1
Gault, R.S.2
-
26
-
-
84885099350
-
I3DP, a robust 3D printing approach enabling genetic post-printing surface modification
-
Wang, X. et al. i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. Chem. Commun. 49, 10064-10066 (2013).
-
(2013)
Chem. Commun.
, vol.49
, pp. 10064-10066
-
-
Wang, X.1
-
27
-
-
84937468305
-
Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery
-
Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031-5039 (2015).
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5031-5039
-
-
Xing, J.-F.1
Zheng, M.-L.2
Duan, X.-M.3
-
28
-
-
84925264033
-
Continuous liquid interface production of 3D objects
-
Tumbleston, J.R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349-1352 (2015).
-
(2015)
Science
, vol.347
, pp. 1349-1352
-
-
Tumbleston, J.R.1
-
29
-
-
70349996385
-
Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices
-
Park, S.H., Yang, D.Y. & Lee, K.S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3, 1-11 (2009).
-
(2009)
Laser Photon. Rev.
, vol.3
, pp. 1-11
-
-
Park, S.H.1
Yang, D.Y.2
Lee, K.S.3
-
30
-
-
85017469385
-
Inkjet-based micromanufacturing
-
(eds. Korvink, J.G., Smith, P.J. & Shin, D.-Y.) Wiley-VCH
-
Wallace, D. in Inkjet-based Micromanufacturing Vol. 9 Advanced Micro and Nanosystems (eds. Korvink, J.G., Smith, P.J. & Shin, D.-Y.) 1-14 (Wiley-VCH, 2012).
-
(2012)
Advanced Micro and Nanosystems
, vol.9
, pp. 1-14
-
-
Wallace, D.1
-
31
-
-
84937943461
-
A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing
-
Shirazi, S.F.S. et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 20 (2015).
-
(2015)
Sci. Technol. Adv. Mater.
, vol.16
, pp. 20
-
-
Shirazi, S.F.S.1
-
32
-
-
84926350562
-
3D-printed alginate/phenamil composite scaffolds constituted with microsized core-shell struts for hard tissue regeneration
-
Lee, K. et al. 3D-printed alginate/phenamil composite scaffolds constituted with microsized core-shell struts for hard tissue regeneration. RSC Adv. 5, 29335-29345 (2015).
-
(2015)
RSC Adv.
, vol.5
, pp. 29335-29345
-
-
Lee, K.1
-
33
-
-
0242668870
-
Organ printing: Computer-aided jet-based 3D tissue engineering
-
Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R.R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157-161 (2003).
-
(2003)
Trends Biotechnol.
, vol.21
, pp. 157-161
-
-
Mironov, V.1
Boland, T.2
Trusk, T.3
Forgacs, G.4
Markwald, R.R.5
-
34
-
-
84970886216
-
Process technology 3D printing for drugs
-
Dorey, E. Process technology 3D printing for drugs. Chem. Ind. 78, 7 (2014).
-
(2014)
Chem. Ind.
, vol.78
, pp. 7
-
-
Dorey, E.1
-
35
-
-
84926460129
-
Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms
-
Icten, E., Giridhar, A., Taylor, L.S., Nagy, Z.K. & Reklaitis, G.V. Dropwise additive manufacturing of pharmaceutical products for melt-based dosage forms. J. Pharm. Sci. 104, 1641-1649 (2015).
-
(2015)
J. Pharm. Sci.
, vol.104
, pp. 1641-1649
-
-
Icten, E.1
Giridhar, A.2
Taylor, L.S.3
Nagy, Z.K.4
Reklaitis, G.V.5
-
36
-
-
0345117988
-
Selective laser sintering: A qualitative and objective approach
-
Kumar, S. Selective laser sintering: a qualitative and objective approach. JOM J. Miner. Met. Mater. Soc. 55, 43-47 (2003).
-
(2003)
JOM J. Miner. Met. Mater. Soc.
, vol.55
, pp. 43-47
-
-
Kumar, S.1
-
37
-
-
0029229906
-
Direct selective laser sintering of metals
-
Agarwala, M., Bourell, D., Beaman, J., Marcus, H. & Barlow, J. Direct selective laser sintering of metals. Rapid Prototyping J. 1, 26-36 (1995).
-
(1995)
Rapid Prototyping J.
, vol.1
, pp. 26-36
-
-
Agarwala, M.1
Bourell, D.2
Beaman, J.3
Marcus, H.4
Barlow, J.5
-
38
-
-
0037414335
-
Sintering of commercially pure titanium powder with a Nd: YAG laser source
-
Fischer, P. et al. Sintering of commercially pure titanium powder with a Nd: YAG laser source. Acta Mater. 51, 1651-1662 (2003).
-
(2003)
Acta Mater.
, vol.51
, pp. 1651-1662
-
-
Fischer, P.1
-
39
-
-
33645512638
-
A generating method for digital gear tooth surfaces
-
Wang, F.L., Yi, C.Y., Wang, T., Yang, S.Z. & Zhao, G. A generating method for digital gear tooth surfaces. Int. J. Adv. Manuf. Technol. 28, 474-485 (2006).
-
(2006)
Int. J. Adv. Manuf. Technol.
, vol.28
, pp. 474-485
-
-
Wang, F.L.1
Yi, C.Y.2
Wang, T.3
Yang, S.Z.4
Zhao, G.5
-
40
-
-
84888143945
-
Design and additive manufacture for flow chemistry
-
Capel, A.J. et al. Design and additive manufacture for flow chemistry. Lab Chip 13, 4583-4590 (2013).
-
(2013)
Lab Chip
, vol.13
, pp. 4583-4590
-
-
Capel, A.J.1
-
41
-
-
84924984183
-
3D printed molds for non-planar PDMS microfluidic channels
-
Hwang, Y.H., Paydar, O.H. & Candler, R.N. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuat. A Phys. 226, 137-142 (2015).
-
(2015)
Sens. Actuat. A Phys.
, vol.226
, pp. 137-142
-
-
Hwang, Y.H.1
Paydar, O.H.2
Candler, R.N.3
-
42
-
-
84885163960
-
Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device
-
Mathieson, J.S., Rosnes, M.H., Sans, V., Kitson, P.J. & Cronin, L. Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285-291 (2013).
-
(2013)
Beilstein J. Nanotechnol.
, vol.4
, pp. 285-291
-
-
Mathieson, J.S.1
Rosnes, M.H.2
Sans, V.3
Kitson, P.J.4
Cronin, L.5
-
43
-
-
84878126860
-
3D-printed devices for continuous-flow organic chemistry
-
Dragone, V., Sans, V., Rosnes, M.H., Kitson, P.J. & Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951-959 (2013).
-
(2013)
Beilstein J. Org. Chem.
, vol.9
, pp. 951-959
-
-
Dragone, V.1
Sans, V.2
Rosnes, M.H.3
Kitson, P.J.4
Cronin, L.5
-
44
-
-
84865202010
-
Configurable 3D-printed millifluidic and microfluidic 'lab on a chip' reactionware devices
-
Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V. & Cronin, L. Configurable 3D-printed millifluidic and microfluidic 'lab on a chip' reactionware devices. Lab Chip 12, 3267-3271 (2012).
-
(2012)
Lab Chip
, vol.12
, pp. 3267-3271
-
-
Kitson, P.J.1
Rosnes, M.H.2
Sans, V.3
Dragone, V.4
Cronin, L.5
-
45
-
-
84928576320
-
Development of a 3D printer using scanning projection stereolithography
-
Lee, M.P. et al. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 5, 9875 (2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 9875
-
-
Lee, M.P.1
-
46
-
-
84876926333
-
3D printing of multifunctional nanocomposites
-
Campbell, T.A. & Ivanova, O.S. 3D printing of multifunctional nanocomposites. Nano Today 8, 119-120 (2013).
-
(2013)
Nano Today
, vol.8
, pp. 119-120
-
-
Campbell, T.A.1
Ivanova, O.S.2
-
47
-
-
84926476189
-
3D printing of a multifunctional nanocomposite helical liquid sensor
-
Guo, S.-Z., Yang, X., Heuzey, M.-C. & Therriault, D. 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7, 6451-6456 (2015).
-
(2015)
Nanoscale
, vol.7
, pp. 6451-6456
-
-
Guo, S.-Z.1
Yang, X.2
Heuzey, M.-C.3
Therriault, D.4
-
48
-
-
84920141731
-
3D printing of reduced graphene oxide nanowires
-
Kim, J.H. et al. 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157-161 (2015).
-
(2015)
Adv. Mater.
, vol.27
, pp. 157-161
-
-
Kim, J.H.1
-
49
-
-
84921303242
-
3D-printed mechanochromic materials
-
Peterson, G.I., Larsen, M.B., Ganter, M.A., Storti, D.W. & Boydston, A.J. 3D-printed mechanochromic materials. ACS Appl. Mater. Interfaces 7, 577-583 (2015).
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 577-583
-
-
Peterson, G.I.1
Larsen, M.B.2
Ganter, M.A.3
Storti, D.W.4
Boydston, A.J.5
-
50
-
-
84935002900
-
Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling
-
Postiglione, G., Natale, G., Griffini, G., Levi, M. & Turri, S. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos. A Appl. Sci. Manuf. 76, 110-114 (2015).
-
(2015)
Compos. A Appl. Sci. Manuf.
, vol.76
, pp. 110-114
-
-
Postiglione, G.1
Natale, G.2
Griffini, G.3
Levi, M.4
Turri, S.5
-
51
-
-
85027945882
-
Toward 3D printing of pure metals by laser-induced forward transfer
-
Visser, C.W. et al. Toward 3D printing of pure metals by laser-induced forward transfer. Adv. Mater. 27, 4087-4092 (2015).
-
(2015)
Adv. Mater.
, vol.27
, pp. 4087-4092
-
-
Visser, C.W.1
-
52
-
-
84936971391
-
3D printable graphene composite
-
Wei, X. et al. 3D printable graphene composite. Sci. Rep. 5, 11181 (2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 11181
-
-
Wei, X.1
-
53
-
-
1142301873
-
Freeform fabrication of zinc-air batteries and electromechanical assemblies
-
Malone, E. et al. Freeform fabrication of zinc-air batteries and electromechanical assemblies. Rapid Prototyping J. 10, 58-69 (2004).
-
(2004)
Rapid Prototyping J.
, vol.10
, pp. 58-69
-
-
Malone, E.1
-
54
-
-
84925745528
-
Latest advances in the manufacturing of 3D rechargeable lithium microbatteries
-
Ferrari, S. et al. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries. J. Power Sources 286, 25-46 (2015).
-
(2015)
J. Power Sources
, vol.286
, pp. 25-46
-
-
Ferrari, S.1
-
55
-
-
84991807790
-
3D printing soft materials: What is possible?
-
Trimmer, B., Lewis, J.A., Shepherd, R.F. & Lipson, H. 3D printing soft materials: what is possible? Soft Robot. 2, 3-6 (2015).
-
(2015)
Soft Robot
, vol.2
, pp. 3-6
-
-
Trimmer, B.1
Lewis, J.A.2
Shepherd, R.F.3
Lipson, H.4
-
56
-
-
79951804311
-
Soft robotics for chemists
-
Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X. & Whitesides, G.M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890-1895 (2011).
-
(2011)
Angew. Chem. Int. Ed.
, vol.50
, pp. 1890-1895
-
-
Ilievski, F.1
Mazzeo, A.D.2
Shepherd, R.F.3
Chen, X.4
Whitesides, G.M.5
-
57
-
-
34347256054
-
Annual review of biophysics and biomolecular structure
-
Annual Reviews
-
Melin, J. & Quake, S.R. in Annual Review of Biophysics and Biomolecular Structure. Vol. 36 Annual Review of Biophysics 213-231 (Annual Reviews, 2007).
-
(2007)
Annual Review of Biophysics
, vol.36
, pp. 213-231
-
-
Melin, J.1
Quake, S.R.2
-
58
-
-
84931288067
-
3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up
-
Kitson, P.J., Marshall, R.J., Long, D., Forgan, R.S. & Cronin, L. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723-12728 (2014).
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 12723-12728
-
-
Kitson, P.J.1
Marshall, R.J.2
Long, D.3
Forgan, R.S.4
Cronin, L.5
-
59
-
-
33746892256
-
MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units
-
Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223-10230 (2006).
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 10223-10230
-
-
Loiseau, T.1
|