메뉴 건너뛰기




Volumn 35, Issue 30, 2016, Pages 5642-5655

Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis

Author keywords

inverse probability of treatment weighting (IPTW); Monte Carlo simulations; observational study; propensity score; survival analysis; variance estimation

Indexed keywords

HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE INHIBITOR;

EID: 84983542295     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7084     Document Type: Article
Times cited : (385)

References (34)
  • 1
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 79951791644 scopus 로고    scopus 로고
    • A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality
    • Austin PC. A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. Multivariate Behavioral Research 2011; 46:119–151.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 119-151
    • Austin, P.C.1
  • 3
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity-score methods for reducing the effects of confounding in observational studies
    • Austin PC. An introduction to propensity-score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research 2011; 46:399–424.
    • (2011) Multivariate Behavioral Research , vol.46 , pp. 399-424
    • Austin, P.C.1
  • 5
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine 2008; 27(12):2037–2049.
    • (2008) Statistics in Medicine , vol.27 , Issue.12 , pp. 2037-2049
    • Austin, P.C.1
  • 6
    • 72749123968 scopus 로고    scopus 로고
    • A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals
    • Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. Journal of Clinical Epidemiology 2010; 63(2):142–153.
    • (2010) Journal of Clinical Epidemiology , vol.63 , Issue.2 , pp. 142-153
    • Austin, P.C.1    Manca, A.2    Zwarenstein, M.3    Juurlink, D.N.4    Stanbrook, M.B.5
  • 7
    • 84861097401 scopus 로고    scopus 로고
    • Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study
    • Gayat E, Resche-Rigon M, Mary JY, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharmaceutical Statistics 2012; 11(3):222–229.
    • (2012) Pharmaceutical Statistics , vol.11 , Issue.3 , pp. 222-229
    • Gayat, E.1    Resche-Rigon, M.2    Mary, J.Y.3    Porcher, R.4
  • 8
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stastisics in Medicine 2013; 32(16):2837–2849.
    • (2013) Stastisics in Medicine , vol.32 , Issue.16 , pp. 2837-2849
    • Austin, P.C.1
  • 9
    • 56349115008 scopus 로고    scopus 로고
    • Notes and comments on the failure of the bootstrap for matching estimators
    • Abadie A, Imbens GW. Notes and comments on the failure of the bootstrap for matching estimators. Econometrica 2008; 76(6):1537–1557.
    • (2008) Econometrica , vol.76 , Issue.6 , pp. 1537-1557
    • Abadie, A.1    Imbens, G.W.2
  • 10
    • 67249097811 scopus 로고    scopus 로고
    • Coverage of confidence intervals, and variance estimation in propensity-score matched analyses
    • Article 13.
    • Austin PC, Type I, Rates E. Coverage of confidence intervals, and variance estimation in propensity-score matched analyses. International Journal of Biostatistics 2009; 5(1): Article 13. DOI: 10.2202/1557-4679.1146.
    • (2009) International Journal of Biostatistics , vol.5 , Issue.1
    • Austin, P.C.1    Type, I.2    Rates, E.3
  • 11
    • 79955639125 scopus 로고    scopus 로고
    • Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples
    • Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Statistics in Medicine 2011; 30(11):1292–1301.
    • (2011) Statistics in Medicine , vol.30 , Issue.11 , pp. 1292-1301
    • Austin, P.C.1
  • 12
    • 84908056108 scopus 로고    scopus 로고
    • The use of bootstrapping when using propensity-score matching without replacement: a simulation study
    • Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Statisics in Medicine 2014; 33(24):4306–4319.
    • (2014) Statisics in Medicine , vol.33 , Issue.24 , pp. 4306-4319
    • Austin, P.C.1    Small, D.S.2
  • 13
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in Medicine 2004; 23(19):2937–2960.
    • (2004) Statistics in Medicine , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 14
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. Statistics in Medicine 2010; 29(3):337–346.
    • (2010) Statistics in Medicine , vol.29 , Issue.3 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 16
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403–425.
    • (2004) Psychological Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 17
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Statistics in Medicine 2007; 26(4):734–753.
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 19
    • 51749124303 scopus 로고    scopus 로고
    • Constructing inverse probability weights for marginal structural models
    • Cole SR, Hernan MA. Constructing inverse probability weights for marginal structural models. American Journal of Epidemiology 2008; 168(6):656–664.
    • (2008) American Journal of Epidemiology , vol.168 , Issue.6 , pp. 656-664
    • Cole, S.R.1    Hernan, M.A.2
  • 20
    • 54049137609 scopus 로고    scopus 로고
    • A diagnostic routine for the detection of consequential heterogeneity of causal effects
    • Morgan SL, Todd JL. A diagnostic routine for the detection of consequential heterogeneity of causal effects. Sociological Methodology 2008; 38:231–281.
    • (2008) Sociological Methodology , vol.38 , pp. 231-281
    • Morgan, S.L.1    Todd, J.L.2
  • 21
    • 8744315994 scopus 로고    scopus 로고
    • Model selection, confounder control, and marginal structural models: review and new applications
    • Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. The American Statistician 2004; 58:272–279.
    • (2004) The American Statistician , vol.58 , pp. 272-279
    • Joffe, M.M.1    Ten Have, T.R.2    Feldman, H.I.3    Kimmel, S.E.4
  • 23
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561–570.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 561-570
    • Hernan, M.A.1    Brumback, B.2    Robins, J.M.3
  • 24
    • 80053002372 scopus 로고    scopus 로고
    • ipw: an R package for inverse probability weighting
    • van der Wal WM, Geskus RB. ipw: an R package for inverse probability weighting. Journal of Statistical Software 2011; 43(13). https://www.jstatsoft.org/article/view/v043i13.
    • (2011) Journal of Statistical Software , vol.43 , Issue.13
    • van der Wal, W.M.1    Geskus, R.B.2
  • 25
    • 77149125892 scopus 로고    scopus 로고
    • Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals
    • Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value in Health 2010; 13(2):273–277.
    • (2010) Value in Health , vol.13 , Issue.2 , pp. 273-277
    • Xu, S.1    Ross, C.2    Raebel, M.A.3    Shetterly, S.4    Blanchette, C.5    Smith, D.6
  • 26
    • 84896729825 scopus 로고    scopus 로고
    • The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments
    • Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stastisics in Medicine 2014; 33(7):1242–1258.
    • (2014) Stastisics in Medicine , vol.33 , Issue.7 , pp. 1242-1258
    • Austin, P.C.1
  • 27
    • 33745466638 scopus 로고    scopus 로고
    • A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use
    • Austin PC, Mamdani MM. A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use. Statistics in Medicine 2006; 25(12):2084–2106.
    • (2006) Statistics in Medicine , vol.25 , Issue.12 , pp. 2084-2106
    • Austin, P.C.1    Mamdani, M.M.2
  • 30
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713–1723.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 31
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
    • Austin PC, Grootendorst P, Normand SL, Anderson GM. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Statistics in Medicine 2007; 26(4):754–768.
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.3    Anderson, G.M.4
  • 32
    • 84944796673 scopus 로고    scopus 로고
    • Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
    • Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 2015; 34(28):3661–3679.
    • (2015) Statistics in Medicine , vol.34 , Issue.28 , pp. 3661-3679
    • Austin, P.C.1    Stuart, E.A.2
  • 33
    • 84893752911 scopus 로고    scopus 로고
    • Variance reduction in randomised trials by inverse probability weighting using the propensity score
    • Williamson EJ, Forbes A, White IR. Variance reduction in randomised trials by inverse probability weighting using the propensity score. Statistics in Medicine 2014; 33(5):721–737.
    • (2014) Statistics in Medicine , vol.33 , Issue.5 , pp. 721-737
    • Williamson, E.J.1    Forbes, A.2    White, I.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.