메뉴 건너뛰기




Volumn 45, Issue , 2013, Pages 94-100

Learning the pseudoinverse solution to network weights

Author keywords

Biological plausibility; Extreme learning machine; Moore Penrose pseudoinverse; Neural engineering

Indexed keywords

BIOLOGICAL PLAUSIBILITY; BIOLOGICALLY PLAUSIBLE NEURAL NETWORKS; COMPUTATIONAL NEUROSCIENCE; EXTREME LEARNING MACHINE; NEURAL ENGINEERING; NEURAL NETWORK STRUCTURES; NEUROMORPHIC ENGINEERING; PSEUDO-INVERSES;

EID: 84880787590     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.02.008     Document Type: Article
Times cited : (81)

References (28)
  • 1
    • 79959677882 scopus 로고    scopus 로고
    • A simple derivation of a bound on the perceptron margin using singular value decomposition
    • Barak O., Rigotti M. A simple derivation of a bound on the perceptron margin using singular value decomposition. Neural Computation 2011, 23:1935-1943.
    • (2011) Neural Computation , vol.23 , pp. 1935-1943
    • Barak, O.1    Rigotti, M.2
  • 4
    • 78149334888 scopus 로고    scopus 로고
    • Large-margin classification in infinite neural networks
    • Cho Y., Saul L.K. Large-margin classification in infinite neural networks. Neural Computation 2010, 22:2678-2697.
    • (2010) Neural Computation , vol.22 , pp. 2678-2697
    • Cho, Y.1    Saul, L.K.2
  • 5
    • 84867681939 scopus 로고    scopus 로고
    • Silicon neurons that compute. In Int. conf. artificial neural networks, ICANN 2012. Lecture Notes in Computer Science, 7552.
    • Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., & Gao, P. et al. (2012). Silicon neurons that compute. In Int. conf. artificial neural networks, ICANN 2012. Lecture Notes in Computer Science, 7552. (pp. 121-128).
    • (2012) , pp. 121-128
    • Choudhary, S.1    Sloan, S.2    Fok, S.3    Neckar, A.4    Trautmann, E.5    Gao, P.6
  • 7
    • 84865104678 scopus 로고    scopus 로고
    • Real time on-chip implementation of dynamical systems with spiking neurons.
    • In Proc. int. joint conf. neural networks, IJCNN 2012.
    • Galluppi, F., Davies, S., Furber, S., Stewart, T., & Eliasmith, C. (2012). Real time on-chip implementation of dynamical systems with spiking neurons. In Proc. int. joint conf. neural networks, IJCNN 2012. (pp. 1-8).
    • (2012) , pp. 1-8
    • Galluppi, F.1    Davies, S.2    Furber, S.3    Stewart, T.4    Eliasmith, C.5
  • 8
    • 0001837197 scopus 로고
    • Some applications of the pseudoinverse of a matrix
    • Greville T.N.E. Some applications of the pseudoinverse of a matrix. SIAM Review 1960, 2:15-22.
    • (1960) SIAM Review , vol.2 , pp. 15-22
    • Greville, T.N.E.1
  • 9
    • 0742324133 scopus 로고    scopus 로고
    • A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data
    • Guo P., Lyu M.R. A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data. Neurocomputing 2003, 56:101-121.
    • (2003) Neurocomputing , vol.56 , pp. 101-121
    • Guo, P.1    Lyu, M.R.2
  • 10
    • 84961302112 scopus 로고    scopus 로고
    • Extreme learning machine: learning without iterative tuning.
    • In Tutorial presentation at the World congress on computational intelligence, WCCI 2012. Available at: (on 05.12.12)
    • Huang, G. -B. (2012). Extreme learning machine: learning without iterative tuning. In Tutorial presentation at the World congress on computational intelligence, WCCI 2012 (p. 96). Available at: (on 05.12.12). http://www.ntu.edu.sg/home/egbhuang/.
    • (2012) , pp. 96
    • Huang, G.-B.1
  • 11
    • 33751281398 scopus 로고    scopus 로고
    • On-line sequential extreme learning machine.
    • In Proc. IASTED international conference on computational intelligence, CI 2005.
    • Huang, G. -B., Liang, N. -Y., Rong, H. -J., Saratchandran, P., & Sundararajan, N. (2005). On-line sequential extreme learning machine. In Proc. IASTED international conference on computational intelligence, CI 2005.
    • (2005)
    • Huang, G.-B.1    Liang, N.-Y.2    Rong, H.-J.3    Saratchandran, P.4    Sundararajan, N.5
  • 12
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 13
    • 0015331348 scopus 로고
    • Correlation matrix memories
    • Kohonen T. Correlation matrix memories. IEEE Transactions on Computers 1988, C-21(4):353-359.
    • (1988) IEEE Transactions on Computers , vol.21 C , Issue.4 , pp. 353-359
    • Kohonen, T.1
  • 15
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin, (Chapter 2)
    • Kohonen T. Self-organizing maps 2000, Springer-Verlag, Berlin, (Chapter 2). 3rd ed.
    • (2000) Self-organizing maps
    • Kohonen, T.1
  • 16
    • 0018681357 scopus 로고
    • On the pseudoinverse of a sum of symmetric matrices with applications to estimation
    • Kovanic P. On the pseudoinverse of a sum of symmetric matrices with applications to estimation. Kybernetika 1979, 15(5):341-348.
    • (1979) Kybernetika , vol.15 , Issue.5 , pp. 341-348
    • Kovanic, P.1
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 6344235947 scopus 로고    scopus 로고
    • The MNIST database of handwritten digits.
    • Available at: (last accessed: 12.07.12).
    • LeCun, Y., & Cortes, C. (2012). The MNIST database of handwritten digits. Available at: (last accessed: 12.07.12). http://yann.lecun.com/exdb/mnist/.
    • (2012)
    • LeCun, Y.1    Cortes, C.2
  • 19
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey M., Glass L. Oscillation and chaos in physiological control systems. Science 1977, 197:287.
    • (1977) Science , vol.197 , pp. 287
    • Mackey, M.1    Glass, L.2
  • 20
    • 80053213996 scopus 로고    scopus 로고
    • Fine-tuning and the stability of recurrent neural networks
    • MacNeil D., Eliasmith C. Fine-tuning and the stability of recurrent neural networks. PLoS One 2011, 6(9):e22885.
    • (2011) PLoS One , vol.6 , Issue.9
    • MacNeil, D.1    Eliasmith, C.2
  • 21
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja E. Neural networks, principal components, and subspaces. International Journal of Neural Systems 1989, 1:61-68.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 22
    • 0032211901 scopus 로고    scopus 로고
    • Six principles for biologically-based computational models of cortical cognition
    • O'Reilly R.C. Six principles for biologically-based computational models of cortical cognition. Trends in Cognitive Sciences 1998, 2:455-462.
    • (1998) Trends in Cognitive Sciences , vol.2 , pp. 455-462
    • O'Reilly, R.C.1
  • 24
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: replacing minimization with randomization in learning
    • MIT Press, Cambridge, MA, D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.)
    • Rahimi A., Recht B. Weighted sums of random kitchen sinks: replacing minimization with randomization in learning. Advances in neural information processing systems, 21 2009, 1313-1320. MIT Press, Cambridge, MA. D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.).
    • (2009) Advances in neural information processing systems, 21 , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 25
    • 84863881230 scopus 로고    scopus 로고
    • Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses
    • Rigotti M., Ben Dayan Rubin D., Wang X.-J., Fusi S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Frontiers in Computational Neuroscience 2010, 4:24. 10.3389/fncom.2010.00024.
    • (2010) Frontiers in Computational Neuroscience , vol.4 , pp. 24
    • Rigotti, M.1    Ben Dayan Rubin, D.2    Wang, X.-J.3    Fusi, S.4
  • 26
    • 80053448548 scopus 로고    scopus 로고
    • On random weights and unsupervised feature learning. In Proc. 28th int. conf. on machine learning.
    • Saxe, A., Koh, P., Chen, Z., Bhand, M., Suresh, B., & Ng, A. (2011). On random weights and unsupervised feature learning. In Proc. 28th int. conf. on machine learning.
    • (2011)
    • Saxe, A.1    Koh, P.2    Chen, Z.3    Bhand, M.4    Suresh, B.5    Ng, A.6
  • 27
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • Schwartz O., Simoncelli E. Natural signal statistics and sensory gain control. Nature Neuroscience 2001, 4:819-825.
    • (2001) Nature Neuroscience , vol.4 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.