메뉴 건너뛰기




Volumn 89, Issue 1, 2016, Pages 30-43

Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure

Author keywords

Class template; Classification; Clustering; EM algorithm; Flow cytometry; Inter sample variation; JCM; Matching; Skew mixture models

Indexed keywords

BIOLOGICAL MARKER; MEMBRANE PROTEIN;

EID: 84983143258     PISSN: 15524922     EISSN: 15524930     Source Type: Journal    
DOI: 10.1002/cyto.a.22789     Document Type: Article
Times cited : (22)

References (29)
  • 1
    • 57749111489 scopus 로고    scopus 로고
    • Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay
    • Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA. Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl Chem 2008;80:2627-2641.
    • (2008) Pure Appl Chem , vol.80 , pp. 2627-2641
    • Tanner, S.D.1    Bandura, D.R.2    Ornatsky, O.3    Baranov, V.I.4    Nitz, M.5    Winnik, M.A.6
  • 5
    • 77749242735 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
    • Frühwirth-Schnatter S, Pyne S. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics 2010;11:317-336.
    • (2010) Biostatistics , vol.11 , pp. 317-336
    • Frühwirth-Schnatter, S.1    Pyne, S.2
  • 8
    • 84908548681 scopus 로고    scopus 로고
    • A non-parametric bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects
    • Dundar M, Akova F, Yerebakan HZ, Rajwa B. A non-parametric bayesian model for joint cell clustering and cluster matching: Identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 2014;15:314
    • (2014) BMC Bioinformatics , vol.15 , pp. 314
    • Dundar, M.1    Akova, F.2    Yerebakan, H.Z.3    Rajwa, B.4
  • 9
    • 80053454749 scopus 로고    scopus 로고
    • A framework for analytical characterization of monoclonal antibodies based on reactivity profiles in different tissues
    • Rossin E, Lin TI, Ho HJ, Mentzer S, Pyne S. A framework for analytical characterization of monoclonal antibodies based on reactivity profiles in different tissues. Bioinformatics 2011;27:2746-2753.
    • (2011) Bioinformatics , vol.27 , pp. 2746-2753
    • Rossin, E.1    Lin, T.I.2    Ho, H.J.3    Mentzer, S.4    Pyne, S.5
  • 10
    • 84867661375 scopus 로고    scopus 로고
    • Parametric modeling of cellular state transitions as measured with flow cytometry different tissues
    • Ho HJ, Lin TI, Chang HH, Haase HB, Huang S, Pyne S. Parametric modeling of cellular state transitions as measured with flow cytometry different tissues. BMC Bioinformatics 2012;13:S5
    • (2012) BMC Bioinformatics , vol.13 , pp. S5
    • Ho, H.J.1    Lin, T.I.2    Chang, H.H.3    Haase, H.B.4    Huang, S.5    Pyne, S.6
  • 11
    • 81955163090 scopus 로고    scopus 로고
    • Maximum likelihood inference for mixtures of skew student-t-normal distributions through practical EM-type algorithms
    • Ho HJ, Pyne S, Lin TI. Maximum likelihood inference for mixtures of skew student-t-normal distributions through practical EM-type algorithms. Stat Comput 2012;22:287-299.
    • (2012) Stat Comput , vol.22 , pp. 287-299
    • Ho, H.J.1    Pyne, S.2    Lin, T.I.3
  • 15
    • 84899064968 scopus 로고    scopus 로고
    • Swift: Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design
    • Naim I, Datta S, Rebhahn J, Cavenaugh JS, Mosmann TR, Sharma G. Swift: Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: Algorithm design. Cytometry A 2014;85:402-421.
    • (2014) Cytometry A , vol.85 , pp. 402-421
    • Naim, I.1    Datta, S.2    Rebhahn, J.3    Cavenaugh, J.S.4    Mosmann, T.R.5    Sharma, G.6
  • 18
    • 84865139571 scopus 로고    scopus 로고
    • Flowpeaks: A fast unsupervised clustering for flow cytometry data via k-means and density peak finding
    • Ge Y, Sealfon SC. Flowpeaks: A fast unsupervised clustering for flow cytometry data via k-means and density peak finding. Bioinformatics 2012;28:2052-2058.
    • (2012) Bioinformatics , vol.28 , pp. 2052-2058
    • Ge, Y.1    Sealfon, S.C.2
  • 20
    • 33644833555 scopus 로고    scopus 로고
    • Mapping normal and cancer cell signalling networks: Towards single-cell proteomics
    • Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 2006;6:146-155.
    • (2006) Nat Rev Cancer , vol.6 , pp. 146-155
    • Irish, J.M.1    Kotecha, N.2    Nolan, G.P.3
  • 21
    • 84883386798 scopus 로고    scopus 로고
    • On mixtures of skew-normal and skew t-distributions
    • Lee SX, McLachlan GJ. On mixtures of skew-normal and skew t-distributions. Adv Data Anal Classification 2013;7:241-266.
    • (2013) Adv Data Anal Classification , vol.7 , pp. 241-266
    • Lee, S.X.1    McLachlan, G.J.2
  • 22
    • 84893974463 scopus 로고    scopus 로고
    • Finite mixtures of multivariate skew t-distributions: Some recent and new results
    • Lee S, McLachlan GJ. Finite mixtures of multivariate skew t-distributions: Some recent and new results. Stat Comput 2014;24:181-202.
    • (2014) Stat Comput , vol.24 , pp. 181-202
    • Lee, S.1    McLachlan, G.J.2
  • 23
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution
    • Azzalini A, Capitanio A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J R Stat Soc Ser B 2003;65:367-389.
    • (2003) J R Stat Soc Ser B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitanio, A.2
  • 24
    • 0004066260 scopus 로고    scopus 로고
    • New York: Wiley Series in Probability and Statistics; .
    • McLachlan GJ, Peel D. Finite Mixture Models. New York: Wiley Series in Probability and Statistics; 2000.
    • (2000) Finite Mixture Models
    • McLachlan, G.J.1    Peel, D.2
  • 27
    • 84969401675 scopus 로고    scopus 로고
    • Immunophenotypes of acute myeloid leukemia from flow cytometry data using templates
    • arXiv:1403.6358 [q-bio.QM] .
    • Azad A, Rajwa B, Pothen A. Immunophenotypes of acute myeloid leukemia from flow cytometry data using templates. arXiv:1403.6358 [q-bio.QM] 2014.
    • (2014)
    • Azad, A.1    Rajwa, B.2    Pothen, A.3
  • 28
    • 84861477707 scopus 로고    scopus 로고
    • Inferring phenotypic properties from single-cell characteristics
    • Qiu P. Inferring phenotypic properties from single-cell characteristics. Plos One 2012;7:e37038
    • (2012) Plos One , vol.7 , pp. e37038
    • Qiu, P.1
  • 29
    • 84983112776 scopus 로고    scopus 로고
    • Nature and man: The goal of bio-security in the course of rapid and inevitable human development
    • Pyne S, Lee S, McLachlan G. Nature and man: The goal of bio-security in the course of rapid and inevitable human development. J Ind Soc Agric Stat 2015;69:117-125.
    • (2015) J Ind Soc Agric Stat , vol.69 , pp. 117-125
    • Pyne, S.1    Lee, S.2    McLachlan, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.