메뉴 건너뛰기




Volumn 22, Issue 1, 2012, Pages 287-299

Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms

Author keywords

ECM algorithm; ECME algorithm; Flow cytometry; Outliers; ST mixtures; STN mixtures

Indexed keywords


EID: 81955163090     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9225-9     Document Type: Article
Times cited : (39)

References (37)
  • 1
    • 19744373319 scopus 로고    scopus 로고
    • The skew-normal distribution and related multivariate families (with discussion)
    • Azzalini, A.: The skew-normal distribution and related multivariate families (with discussion). Scand. J. Stat. 32, 159-188 (2005).
    • (2005) Scand. J. Stat. , vol.32 , pp. 159-188
    • Azzalini, A.1
  • 2
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
    • Azzalini, A., Capitaino, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. B 65, 367-389 (2003).
    • (2003) J. R. Stat. Soc. B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitaino, A.2
  • 3
    • 0031524138 scopus 로고    scopus 로고
    • Normal inverse Gaussian distributions and stochastic volatility modelling
    • Barndorff-Nielsen, O. E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24, 1-13 (1997).
    • (1997) Scand. J. Stat. , vol.24 , pp. 1-13
    • Barndorff-Nielsen, O.E.1
  • 6
    • 47849116171 scopus 로고    scopus 로고
    • Bayesian density estimation using skew student-t-normal mixtures
    • Cabral, C. R. B., Bolfarine, H., Pereira, J. R. G.: Bayesian density estimation using skew student-t-normal mixtures. Comput. Stat. Data Anal. 52, 5075-5090 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 5075-5090
    • Cabral, C.R.B.1    Bolfarine, H.2    Pereira, J.R.G.3
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. B 39, 1-38 (1977).
    • (1977) J. R. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578-588 (1998).
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 9
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611-612 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-612
    • Fraley, C.1    Raftery, A.E.2
  • 11
    • 77749242735 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of univariate and multivariate skew normal and skew-t distributions
    • Frühwirth-Schnatter, S., Pyne, S.: Bayesian inference for finite mixtures of univariate and multivariate skew normal and skew-t distributions. Biostatistics 11, 317-336 (2010).
    • (2010) Biostatistics , vol.11 , pp. 317-336
    • Frühwirth-Schnatter, S.1    Pyne, S.2
  • 12
    • 81955162551 scopus 로고    scopus 로고
    • Stowers Institute for Medical Research. Online available at
    • Glynn, E. F.: FCSExtract Utility. Stowers Institute for Medical Research. Online available at: http://research.stowers-institute.org/efg/ScientificSoftware/Utility/FCSExtract/ (2006).
    • (2006) FCSExtract Utility
    • Glynn, E.F.1
  • 13
    • 34249333805 scopus 로고    scopus 로고
    • Skew-symmetric distributions generated by the distribution function of the normal distribution
    • Gómez, H. W., Venegas, O., Bolfarine, H.: Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407 (2007).
    • (2007) Environmetrics , vol.18 , pp. 395-407
    • Gómez, H.W.1    Venegas, O.2    Bolfarine, H.3
  • 15
    • 58149522265 scopus 로고    scopus 로고
    • Model-based clustering with non-elliptically contoured distributions
    • Karlis, D., Santourian, A.: Model-based clustering with non-elliptically contoured distributions. Stat. Comput. 19, 73-83 (2009).
    • (2009) Stat. Comput. , vol.19 , pp. 73-83
    • Karlis, D.1    Santourian, A.2
  • 16
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C.: Consistent estimation of the order of mixture models. Sankhyā 62, 49-66 (2000).
    • (2000) Sankhyā , vol.62 , pp. 49-66
    • Keribin, C.1
  • 18
    • 56349112368 scopus 로고    scopus 로고
    • Maximum likelihood estimation for multivariate skew normal mixture models
    • Lin, T. I.: Maximum likelihood estimation for multivariate skew normal mixture models. J. Multivar. Anal. 100, 257-265 (2009).
    • (2009) J. Multivar. Anal. , vol.100 , pp. 257-265
    • Lin, T.I.1
  • 19
    • 77749280346 scopus 로고    scopus 로고
    • Robust mixture modeling using multivariate skew t distributions
    • Lin, T. I.: Robust mixture modeling using multivariate skew t distributions. Stat. Comput. 20, 343-356 (2010).
    • (2010) Stat. Comput. , vol.20 , pp. 343-356
    • Lin, T.I.1
  • 20
    • 34249737344 scopus 로고    scopus 로고
    • Robust mixture modeling using the skew t distribution
    • Lin, T. I., Lee, J. C., Hsieh, W. J.: Robust mixture modeling using the skew t distribution. Stat. Comput. 17, 81-92 (2007a).
    • (2007) Stat. Comput. , vol.17 , pp. 81-92
    • Lin, T.I.1    Lee, J.C.2    Hsieh, W.J.3
  • 21
    • 34249710125 scopus 로고    scopus 로고
    • Finite mixture modelling using the skew normal distribution
    • Lin, T. I., Lee, J. C., Yen, S. Y.: Finite mixture modelling using the skew normal distribution. Stat. Sin. 17, 909-927 (2007b).
    • (2007) Stat. Sin. , vol.17 , pp. 909-927
    • Lin, T.I.1    Lee, J.C.2    Yen, S.Y.3
  • 22
    • 0000315742 scopus 로고
    • The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
    • Liu, C. H., Rubin, D. B.: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633-648 (1994).
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.H.1    Rubin, D.B.2
  • 23
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A.: Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. B 44, 226-233 (1982).
    • (1982) J. R. Stat. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 27
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B.: Parsimonious Gaussian mixture models. Stat. Comput. 18, 285-296 (2008).
    • (2008) Stat. Comput. , vol.18 , pp. 285-296
    • McNicholas, P.D.1    Murphy, T.B.2
  • 29
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng, X. L., Rubin, D. B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278 (1993).
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 30
    • 1642462316 scopus 로고    scopus 로고
    • Skewed distributions generated by the normal kernel
    • Nadarajah, S., Kotz, S.: Skewed distributions generated by the normal kernel. Stat. Probab. Lett. 65, 269-277 (2003).
    • (2003) Stat. Probab. Lett. , vol.65 , pp. 269-277
    • Nadarajah, S.1    Kotz, S.2
  • 32
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, Vienna: R Foundation for Statistical Computing
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2008).
    • (2008) R: A Language and Environment for Statistical Computing
  • 33
    • 0242595939 scopus 로고    scopus 로고
    • A new class of multivariate skew distributions with application to Bayesian regression models
    • Sahu, S. K., Dey, D. K., Branco, M. D.: A new class of multivariate skew distributions with application to Bayesian regression models. Can. J. Stat. 31, 129-150 (2003).
    • (2003) Can. J. Stat. , vol.31 , pp. 129-150
    • Sahu, S.K.1    Dey, D.K.2    Branco, M.D.3
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15, 77-87 (2002).
    • (2002) Neural Process. Lett. , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 37
    • 77950321764 scopus 로고    scopus 로고
    • Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data
    • Conference of Digital Image Computing: Techniques and ApplicationsMelbourne, Los Alamitos: IEEE Computer Society
    • Wang, K., Ng, S. K., McLachlan, G. J.: Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data. In: Proceedings of DICTA 2009, Conference of Digital Image Computing: Techniques and Applications, Melbourne, pp. 526-531. IEEE Computer Society, Los Alamitos (2009).
    • (2009) Proceedings of DICTA 2009 , pp. 526-531
    • Wang, K.1    Ng, S.K.2    McLachlan, G.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.